

Ck040h Quick Connect Couplings

CUPLA enable flexible and fast connections in various fluid lines.

Nitto Kohki's unique technologies and dedicated research have been proven by numerous patents, which led to the development of 25,000 different CUPLA variations.

Nitto Kohki's quick connect couplings, "CUPLA" enable speedy connections/disconnections of various pipings, such as air, water, oil and gas.

They are active in various industrial fields, thanks to the experience in development of 25,000 different variations. Wide varieties of body materials such as steel, brass, aluminum, stainless steel and plastic are available to match every customer's needs.

Applications diversify from general household to high-tech industries such as in oceanic and space development. Numerous sizes are available for various needs.

Wide varieties of body materials such as steel, brass, plastic, aluminum or stainless steel are available.

A profusion of patented technology crystallized in global users recognition of high quality and high performance. ISO 9001 and 14001 Certification Award

"CUPLA" quick connect couplings are produced as the crystallization of high-grade know-how nuttured in the fields of fluid engineering and materials engineering, and top level precision machining technology. Having assessed Nitto Kohki consistent quality assurance and control system ranging from design and development through procurement of material, manufacture, assembly, and shipping, the Japan Quality Assurance Foundation, authority for inspection and registration, awarded us "ISO 9001", international standard for quality management systems, and "ISO 14001", international standard for environment management systems intended to perform global environment preservation and pollution control. High reliability built on unparalleled "high quality" and accumulated history of "productivity" for stable supply. CUPLA is receiving overwhelming support from many users spread all over the world as the top brand for fluid energy transmission and control.

Quick Connect Couplings

For easy replacements	Replacements of pneumatic / hydraulic tools, pneumatic / hydraulic cylinders, mold attachments, etc.
For temporary installation in test line	Vacuum tests, pressure durability tests, leakage tests, running tests, etc.
For filling	For filling up various industrial gases, including inert gases, nitrogen, LPG, carbon dioxide, oxygen, fuel gas, etc.
For maintenance services	For computer cooling system, hydraulic cylinders in die-casting machines.

Nitto Kohki's Official YouTube channel

Watch our products in action. We have various products from Quick Connect Couplings "CUPLA" to Power and Machine Tools, "delvo" Electric Screwdrivers, Electric Screwdrivers, Linear-motor-driven Free Piston Pumps and also Door Closers.

www.youtube.com/c/NittoKohkiGLOBAL

Beware of imitations

Recently on the market, there have appeared similar products that invite misidentification or confusion with Nitto Kohki couplings, or such products that claim to have compatible mating parts. Nitto Kohki cannot accept responsibility for any accident that may result by mixed use with a coupling of another brand that seems connectable to a Nitto Kohki coupling. Nitto Kohki CUPLA are produced with their own unique tolerances and precision under strict quality control, and are not interchangeable with other couplings that are not under such tolerances. Therefore, connection to other brand of coupling may end up with abrupt breakdown or personal injury. Please be sure to check for our marks below, which are always inscribed on Nitto Kohki CUPLA products, when you order and purchase.

1 to 2

7 to 16

3

4

5

6

17

18

19

Environmental activities / Contents New product (CUBE CUPLA) Nitto Kohki's environmentally-friendly Manufacturing Select an Appropriate CUPLA for the Job Glossary

Guide for Selecting "NITTO KOHKI" Standard CUPLA Semi-standard CUPLA Series and CUPLA Accessories Special Made-to-Order CUPLA HI CUPLA Series Interchangeability

Standard CUPLA Se	eries		
MICRO CUPLA	21	MOLD CUPLA	69
MICRO CUPLA with Tube Fitter	21	MOLD CUPLA High Flow Type	71
MICRO CUPLA Stainless Steel	21	FLOW METER	72
SMALL CUPLA	25	LEVER LOCK CUPLA Metal Body	73
COMPACT CUPLA	27	LEVER LOCK CUPLA Plastic Body	73
CUBE CUPLA NEW	29	TSP CUPLA	77
SUPER CUPLA	33	TSP CUPLA with Ball Valve	79
SUPER CUPLA with Tube Fitter	33	SP CUPLA Type A	81
HI CUPLA	35	HOT WATER CUPLA HW Type	83
HI CUPLA BL	37	ZEROSPILL CUPLA	85
HI CUPLA 200	39	HSP CUPLA	87
HI CUPLA 200 with Tube Fitter	39	HYPER HSP CUPLA	89
HI CUPLA for Connection to Braided Hoses	41	210 CUPLA	91
NUT CUPLA	41	HSU CUPLA	93
NUT CUPLA 200	41	S210 CUPLA	95
ROTARY NUT CUPLA	41	280 CUPLA	97
LOCK CUPLA 200	43	350 CUPLA	99
HI CUPLA Two Way Type	44	FLAT FACE CUPLA F35	101
FULL-BLOW CUPLA	45	FLAT FACE CUPLA FF	103
PURGE HI CUPLA PVR Type	47	450B CUPLA	105
PURGE HI CUPLA	49	700R CUPLA	106
PURGE LINE CUPLA	50	MULTI CUPLA MAM Type	107
ROTARY LINE CUPLA RT Type	51	MULTI CUPLA MAM-B Type	109
ROTARY LINE CUPLA RE Type	51	MULTI CUPLA MAM-A Type	113
LINE CUPLA 200T Type	53	MULTI CUPLA MAS/MAT Type	117
LINE CUPLA 200L Type	53	MULTI CUPLA MALC-01 Type	119
LINE CUPLA 200S Type	53	MULTI CUPLA MALC-SP Type	121
ROTARY FULL-BLOW LINE CUPLA	55	MULTI CUPLA MALC-HSP Type	125
HI CUPLA ACE	57	SEMICON CUPLA SP Type	129
ROTARY PLUG	59	SEMICON CUPLA SCS Type	130
TWIST PLUG	60	SEMICON CUPLA SCY Type	131
PURGE PLUG	61	SEMICON CUPLA SCT Type	132
ANTI-VIBRATION PLUG HOSE	62	SEMICON CUPLA SCAL Type	133
DUSTER CUPLA	63	SEMICON CUPLA SCF Type	134
NK CUPLA HOSE	64	SP-V CUPLA	135
NK CUPLA COIL HOSE	64	PCV PIPE CUPLA	137
MINI CUPLA	65	PAINT CUPLA	139
MINI CUPLA SUPER	67	HYGIENIC CUPLA	141
	_		\sim
Somi-Standard CIID		Soriae	

Semi-Standard CUPLA Series CUPLA with Single Lock 143 143 CUPLA with Safety Lock Two-way Shut-off Type Small Size CUPLA 144 144 TSP-HP CUPLA for High Pressure HIGH FLOW CUPLA 145

berres	<u> </u>	
HIGH FLOW CUPLA BI Type		146
SP CUPLA Type A PV Type	NEW	147
PLASTIC CUPLA BC Type		148
PLASTIC CUPLA BCC Type		148
		-

149 to 154

Accessories

Seal Material Selection Table for Reference	155 to 157	
Body Material Selection Table	158	
Unit Conversion Tables	159	
CUPLA Inquiry Form	160	
Taper Pipe Threads	162	
Production Facilities That Assure Our Product Quality	163	
From Development to Production, Management and Ma	arketing of "CUPLA" 164	
Nitto Kohki's Laborsaving Products	165	
Safety Guide	166 to 172	
Maintenance of CUPLA	172	

New product

Newly designed in colorful 5 colors.

Quick connect couplings for air / water piping

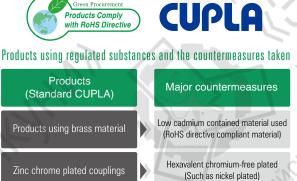
Nitto Kohki's environmentally-friendly Manufacturing

The coexistence of mankind and nature. Each company is now asked for a global level environmental conservation and improvement as important themes. As a part of the environmental improvement activities, we are offering various products such as "couplings", "machines and tools", "screwdrivers", "air compressors and vacuum pumps", and "door closers" as green procurement products.

"CUPLA" active in the widespread field of the manufacturing industry. Coupling for fuel cell vehicles. **HHV CUPLA** CUPLA for fueling high pressure hydrogen ECO Fuel cell vehicles are one of the remarkable environmental conservation solutions. In order to respond quickly to environmental problems. Nitto Kohki has developed the first coupler in Japan to supply and fill its fuel source, high-pressure Welding / Cutting neumatic draulic CUP pure hydrogen piping piping piping Mold temperature Semiconductor Aerospace control piping manufacturing industry Nitto Kohki's environmentally-friendly Manufacturing Green Procurement

Nitto Kohki has made every effort in developing "Environmental Improvement Plans" through the implementation of ISO14001, to execute environmentally conscious business activities on a company-wide basis. As a part of our ongoing commitment to the environment, we are also commited to reduce and/or exclude restricted chemical substances from our products as designated by RoHS directives, laws and regulations of chemical substances.

All couplings except for the following products have been switched to green procurement compliant products.


- LEVER LOCK CUPLA
- All CUPLA products with Tube Fitter
- CUPLA CONNECTING JIG

- PRESSURE GAUGE

Please visit our website for applicable products.

Non compliant

www.nitto-kohki.co.jp/e/

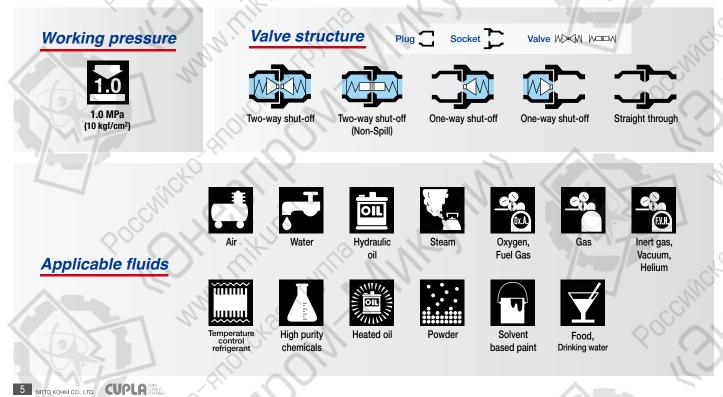
Note: Color of plating

The color of the zinc chrome plating is yellow, while nickel plating is silver. Some products may look different in appearance when changed.

Select an Appropriate CUPLA for the Job

Nitto Kohki has the wide range of CUPLA products covering almost every application and feature you need. In order to select an appropriate CUPLA for your job, you need to realize the following specifications.

Specifications to Be Checked When Selecting CUPLA


Fluid and the Temperature	Select a CUPLA with body and seal materials that suit the fluid and its temperature.	There are different body and seal materials to suit different fluids. For example, we recommend steel HI CUPLA for air, and brass or stainless steel for water. Please refer to Body Material Selection Table and Seal Material Selection Table at the end of this catalog for details about the correspondence between fluids and materials.
Fluid Pressure	Select a CUPLA suitable for the actual Maximum. fluid pressure.	Fluid pressure is also a key to CUPLA selection. Each series of hydraulic CUPLA have different structures to cope with each pressure resistance ranges up to 68.6 MPa (700 kgf/cm ²).
Automatic Shut-off Valve	Select a CUPLA with a valve structure that suits the piping application.	Valve combinations are two-way shut-off, one-way shut-off, or straight through types. Choose carefully. Unless it is a two-way shut-off type, the internal fluid will flow out from the CUPLA without valve when it is disconnected.
Operating Environment	Select a CUPLA with design and materials that suit each operating environment.	In choosing the type of CUPLA, body material and seal material, consider the temperature range, and/or corrosive atmosphere in the operating environment.
Size and Type of End Configurations	Finally and critically specify the size and type of end configurations.	Having checked the type and materials for the CUPLA, now specify the size and type of end configurations to suit the type of piping. Choose carefully, as the size affects the fluid flow rate.

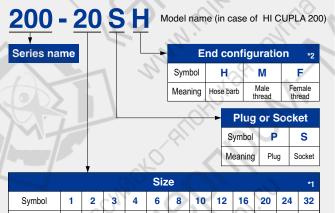
You can search our "CUPLA" at our web site. (www.nitto-kohki.co.jp/e/) Please take a visit. If you cannot find a suitable "CUPLA", please contact us via our web site or enter the above details in the "CUPLA Inquiry Form" at the end of this catalog and send it to us by fax or post.

Symbols

Quick reference symbols:

(1) Working pressure, (2) Type of valve structure, (3) Applicable fluids, are given on each product page to help you to quickly select a suitable CUPLA. Please use them as the guide to grasp each type selection.

Glossary


The following terms are used in detailed information pages of each CUPLA. Refer to these terms when checking CUPLA specifications.

International System of Units (SI Units) Units stated in this catalog are based on SI Units. The old units, which are non-SI Units, are also written within parentheses side by side with SI Units for reference only.

Glossary

The Meaning of Each Letter in the Model Name

The model name of a CUPLA indicates its size, whether plug or socket, and the end configuration. Rated pressure is also shown for some hydraulic couplings. Check the following tables to understand the model name implication before making your selection.

 Nominal diameter
 $1/8^{"}$ $1/4^{"}$ $3/8^{"}$ $1/2^{"}$ $3/4^{"}$ $1^{"}$ $1/4^{"}$ $1/2^{"}$ $3^{"}$ $4^{"}$

 1
 To diameter
 1
 $8^{"}$ $1/2^{"}$ $3/4^{"}$ $1^{"}$ $1/2^{"}$ $2^{"}$ $2^{1}/2^{"}$ $3^{"}$ $4^{"}$

*1: The digit numbers of models for some products differs from those of symbols. For example, in case of HI CUPLA 20SH, not "20" but only "2" of the "20" corresponds to "2" of the symbol and indicates the nominal diameter of 1/4".

*2: For a product with only one type of end configuration, this symbol is omitted. For example, 210 CUPLA have only female threaded end so the model indicates only the size and plug or socket identification.

Body Material

This indicates the material that is used for the plug body or socket body that forms the flow path of fluid through the CUPLA. Some products have internal components of a different material. Please check with us for details.

Body N	laterial	Major applicable fluid		
Common name	Mark			
Brass	BRASS	Air, Water, Oil		
Iron, Steel	STEEL	Air, Oil		
Stainless steel	SUS	Air, Water, Oil		

Please refer to Page 158 for body material selection table.

Size

This indicates the nominal size of the pipe thread connection or of the hose to be used.

Working Pressure

The normal allowable fluid pressure under continuous use. Exceeding the working pressure may cause damage and leakage.

Pressure Loss

This shows the loss of pressure when fluid runs through the CUPLA set. They are measured values at our testing facilities. May differ according to the installation/piping method and operating conditions.

Minimum Cross-Sectional Area

This shows the minimum cross-sectional area of the fluid path when the CUPLA is connected. The position is different in some products.

Seal Material

This shows the material used to seal the CUPLA, usually an O-ring. The standard material is nitrile butadiene rubber. For materials other than those shown below, please specify such as silicone (SI), butyl (IIR), Kalrez (KL) or rubber for food, depending on your application.

Properties of	rubbers	used for	O-rings
---------------	---------	----------	---------

	Fropenties of rubi	Jeis use	u ioi O-iiiiys				
١	Seal materia	l	Working				
١	Common name	Nitto Kohki symbol	Temperature Range	Features			
	Nitrile rubber (SG)		-20°C to +80°C	Standard seal with excellent oil resistance.			
	Hydrogenated	HNBR	-20°C to +120°C	Compared with the standard nitrile rubber, the seal material is more heat and weather resistant.			
	nitrile rubber	HNBR (H708)	-20°C to +120°C	In addition to the above features, the seal material can also be used for refrigeration oil and refrigerant applications such as HFC-134a. (The seal material is employed only in SP-V CUPLA and PCV PIPE CUPLA.)			
	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Excellent for heat, weather, and oil resistance. Applicable to wic range of applications.			
	Chloroprene	CR (X-306)	-20°C to +80°C	Excellent weather resistance.			
	rubber	CR (C308)	-20°C to +80°C	In addition to the above features, the seal material can also be used for refrigeration oil and refrigerant applications such as HFC-134a.			
	Ethylene-propylene tePDM (EPT)		-40°C to +150°C	Excellent resistance to steam and hot water, also excellent resistance to weather and ozone.			
1	Perfluoroelastomer	Р	0°C to +50°C	Excellent resistance to chemical and solvents.			

Note: Even among rubber materials of the same category, the working temperature range differs depending upon the design of the CUPLA. For details, see the specifications of each CUPLA series. As for the Nito Kohki symbol for rubber material, fluoro rubber is designated as "FKM" or "X-100" for example. The above are general features, but the seal resistance depends on fluid temperature, fluid concentration, and additives contained in the fluid.

Working Temperature Range

This shows the minimum and maximum working temperature range of the seal material used in the product.

Continuous use at the minimum or maximum temperature is not recommended. Please contact us for consultation.

Valve Structure

-			
Two-way shut-off		Automatic shut-off valves are mounted in both plug and socket. The valves prevent spill out of fluid from the lines on disconnection.	
Two-way shut-off (Spill Reduction)		"Two-way shut-off" with spill reduction design allows extremely little admixture of air on connection and minimizes fluid spill out on disconnection.	
One-way shut-off		This design prevents fluid outflow only from the socket side on disconnection. Also available are plugs with an automatic shut-off valve.	
Straight through	→	Shut-off valve is equipped neither in plug nor in socket. Fluid flows out from either side on disconnection.	

Suitability for Vacuum

Indicates if the CUPLA has necessary performance required for vacuum applications. (Note that the performance in connected state differs from that of disconnected state.)

Interchangeability

Indicates whether the plug or socket of different series, types or models can be connected with each other.

Maximum Tightening Torque, Tightening Torque Range

Considering the balance between possible leakage caused by loose fit and too much structural stress when a CUPLA is mounted on a workpiece, the appropriate screw-in torque value or range is suggested by the maker.

Flow Direction

The design of some couplings may restrict the fluid flow direction to one way only. Check the suggested direction before installing.

Applicable fluid		, Ó			For Low Pr	essure (Air)			
Name		MICRO CUPLA	SMALL CUPLA	COMPACT CUPLA	CUBE CUPLA	SUPER CUPLA	HI CUPLA	HI CUPLA BL	HI CUPLA 200
Photo	2000 U				Choose from 5 colors				
	Brass	1.0	1.0	1.0			1.0		~C0,
Body material	Stainless steel	1.0	5	1.0			1.5	1.5	
• Working	Steel		0 0			1.0	1.5	1.5	1.5
pressure (MPa)	Plastic				1.0				2
1-1-1	Others	to		,		1.0			-
Body surface to	reatment	Plated (Brass only)	Chrome plated	2	-	Chrome plated (Steel only)	Chrome plated (Steel only)	Chrome plated (Steel only)	Chrome plate
	1/8"	0		0	0	0	0	Mt	
	1/4"		0		$\langle \rangle \rangle$	0	0	0	0
	5/16"			0			4		ti.
	3/8"	20	4				0	0	0
	1/2"		L'o.				0	0	00
	3/4"		di la	<i>1</i> .			0		
Size	1"	, A	\sim	\mathcal{O}			0		
	1 1/4")Ú	\sim						
	1 1/2"	10.				\square		AX	
	2"			<u> </u>					
	2 1/2"	\sim						M-+-	
	3" 4"			<u></u>		-)			
	4" Others	0	0	000	0	0		0	0
Working tempe		-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +180°C (FKM)	-20°C to +60°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +60° (NBR)
Seal material	1	NBR, FKM	NBR	FKM, EPDM	NBR	NBR	NBR, FKM	NBR	NBR
Connection	Manual	JO.	N	0		5	0/5	0	
method	Push-to-connect	0	0	2	0	0		1 X	0
	Two-way shut-off		in X	0	0	\sim		\leq	
Valve	Two-way shut-off (Non-Spill)		· J	_				M-7	7
structure	One-way shut-off	0	0	ALC .	0	0	0	0	0
	Straight through			010	0				15 -
Detailed inform	nation page	21	25	27	29	33	35	37	39

Applicable fluid	l	,Ó	$\overline{\mathbf{N}}$		For Low Pr	essure (Air)			S.
Name	C. NIN	HI CUPLA for Connection to Braided Hoses	NUT CUPLA Rotary nut cupla	NUT CUPLA 200	LOCK CUPLA 200	HI CUPLA Two Way Type	FULL-BLOW Cupla	PURGE HI CUPLA PVR	PURGE Hi cupla
Photo	500 C					ALC: NOT			
	Brass	1.0							1.0
Body material	Stainless steel							<u></u>	\sim
• Working	Steel	1.5	1.5	1.5	1.5	1.5		· · · · · · · · · · · · · · · · · · ·	\sim
pressure (MPa)	Plastic								
	Others	.LO				1	1.5	1.5	1 1
Body surface t	reatment	Chrome plated (Steel only)	Chrome plated	Chrome plated	Chrome plated	Chrome plated			Chrome plate
	1/8"		L.	A				1-1-	
	1/4"	$\sum \delta$	<u></u>		0	0	0		0
~	5/16"	. 1.	.0	5 6 1			-	5	je.
	3/8"	10			0	0	0		0
1	1/2"		et.	<u> </u>	0	0	0	000	0
	3/4"	6.						0	0
Size	1")				0	
5126	1 1/4"	10	\sim						
	1 1/2"	5 0				12	$\mathbf{X}_{\mathcal{A}}$		γ
	2"	0				\geq		222	
	2 1/2"	\sim	S)					1-	
	3"			<u>_</u>	1)			
	4"								6
	Others	0	0 < <	0	0		\bigcirc		M
Working tempe	rature range	-20°C to +80°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +80°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°((NBR)
Seal material		NBR	NBR	NBR	NBR	NBR, FKM	NBR	NBR	NBR
Connection method	Manual Push-to-connect	00	0	0	0	0			0
	Two-way shut-off			0					
Volue	Two-way shut-off								
Valve structure	(Non-Spill) One-way shut-off		0	0	0	0	0	0	0
	Straight through	. 1.		5 6 1			5		in Cr
Detailed inform	ation page	41	41	41	43	44	45	47	49

This chart will let you quickly select an appropriate CUPLA for your application. For technical data, please refer to the detailed information pages of each product, Seal Material Selection Table and Body Material Selection Table at the end of this catalog.

Applicable flui		.0	$\Delta \mathcal{V}$		For Low Pr	essure (Air)			
Name	, cì	PURGE LINE CUPLA	ROTARY Line Cupla	LINE CUPLA 200T/L/S	ROTARY Full-Blow Line Cupla	HI CUPLA Ace	ROTARY PLUG	TWIST PLUG	PURGE PLUG
Photo	Poc	A.		the second second				No.	1
	Brass	1.0	3						20
Body material	Stainless steel		. St.						\sim
Working	Steel		Ø. (1.5	1.0	1.0
pressure (MPa)	Plastic	~~~				1.0, 1.5			
	Others	to	1.5	1.5	1.5				1
Body surface t	reatment	Chrome plated	Chrome plated	Chrome plated	-	14),	Nickel plated	Nickel plated	Chrome plate
	1/8"	\sim	·L'			1		0-7	
	1/4"		0	0	0	0	0	0	0
	5/16"	2. 3		0			4		ŭ,
	3/8"	- D	~			0	0	0	0
	1/2"	0	0	0	0			<	0
	3/4"								
Size	1"	, A		\mathcal{O}					L.
5126	1 1/4"	jQ.	\sim			_			
	1 1/2"	in the	\sim			<u></u>			5
	2"	~ 0	$X \preceq$	<u>.</u>					
	2 1/2"	$\sim \sim$						M +	
	3"			<u></u>	~~~	- 7		<u> </u>	
	4"				$U/I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I$		4		
	Others		0	2	0	0			0
Working tempe	erature range	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60°C (NBR)	-20°C to +80°C (NBR)	-20°C to +60°C (NBR)	-20°C to +60° (NBR)
Seal material	1	NBR	NBR	NBR	NBR	NBR	NBR	NBR	NBR
Connection	Manual	J.	0			5			-
method	Push-to-connect	0	\bigcirc	\sim \circ	0	0		1 X	
	Two-way shut-off		is X			$\langle \cdot \rangle$			
Valve	Two-way shut-off (Non-Spill)	\sim	·VI.	_					7
structure	One-way shut-off	0	0	0	0	0		L_{1}	
	Straight through	1. 1		0 60					1i
Detailed inforn	nation page	50	51	53	55	57	59	60	61

9 NITTO KOHKI CO., LTD. CUPLA DUCK

Applicable fluid		.0	For Low Pre	essure (Air)		For Oxygen a	and Fuel Gas	For Low Pressure (Water)		
Name		ANTI-VIBRATION Plug Hose	DUSTER CUPLA	NK CUPLA Hose	NK CUPLA Coil Hose	MINI CUPLA	MINI CUPLA Super	MICRO CUPLA	SMALL CUPLA	
Photo		X		0	C		N. C.			
	Brass	1 Contraction	. A			0.7	0.7	1.0	1.0	
Body material	Stainless steel		<u> </u>					1.0		
Working	Steel	, Ó					0.7		$\sqrt{2}$	
pressure (MPa)	Plastic									
h	Others	1.5	1.0	1.0	0.7	2			7 7	
Body surface t	reatment		Chrome plated	Chrome plated (Plug only)	Chrome plated (Plug only)	Sh.	Chrome plated	Plated (Brass only)	Chrome plated	
	1/8"		L.	<u>A</u>	L.	0		10	0	
	1/4"		0			0	0		0	
	5/16"	S.	.0			0	0		n.	
	3/8"	0	0			0	0		SI .	
A	1/2"		0	Ň				00		
	3/4"	6.							\mathcal{N}	
Size	1"		\sim)						
5126	1 1/4"	JO .	\sim							
	1 1/2"						$\mathbf{X}_{\mathcal{A}}$		γ	
	2"	.0				Σ		221		
	2 1/2"		37						_	
	3"		1	<u>~</u> 3	1	5				
	4"								. ct	
	Others	1	0 🚫	0	0	0	0	0	0	
Working tempe	rature range	1	-20°C to +60°C (NBR)	-5°C to +60°C (NBR)	−5°C to +60°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	
Seal material		Allo	NBR	NBR	NBR	NBR	NBR	NBR, FKM	NBR	
Connection	Manual	L'	0						7 3	
method	Push-to-connect		2.0	0	0	0	0	0	0	
	Two-way shut-off							$\lambda \ge 1$	1	
Valve structure	Two-way shut-off (Non-Spill)		Hr.							
Structure	One-way shut-off		0	0	0	0	0	0	0	
	Straight through	S.		201			_		Mi,	
Detailed inform	ation page	62	63	64	64	65	67	21	25	

Applicable fluid		0	N		For Low Pres	ssure (Water)			
Name		COMPACT CUPLA	CUBE CUPLA	HI CUPLA	HI CUPLA Ace	MOLD CUPLA	MOLD CUPLA High Flow Type	FLOW METER	LEVER LOCK CUPLA
Photo	8000 M		Choose from 5 colors			A A A A A A A A A A A A A A A A A A A			
	Brass	1.0		1.0		1.0	1.0		-COM
ody material	Stainless steel	1.0	C.C.	1.5					1.8, 1.6, 1.1
• Working	Steel		0 0						
pressure (MPa)	Plastic	<u> </u>	1.0	$\mathbf{\nabla}$	1.0, 1.5				0.5, 0.2
1	Others	et o						0.5	1.8, 1.1, 0.9, 0
Body surface t	reatment	- Q	S	2	-	14	-		
	1/8"	0		0	1	0		M-1	
	1/4"	\mathbf{O}	0	0	0	0	0		
	5/16"	2. 3		00			4		1
	3/8"	- dl	~	0	0	0	0	0	CON.
	1/2"		Lo.	0			0	\langle	
	3/4"		di la	0					0
Size	1"	, A		0					0
	1 1/4"	, Ó	\sim						0
5	1 1/2"	<u> </u>		~~~~~		<u></u>			0
	2"			<u></u>					0
	2 1/2"	\sim							0
	3"		$\langle \cdot \rangle$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1111	-)			0
	4" Others	0	0		0	0			0
Working tempe		-20°C to +180°C (FKM)	-20°C to +60°C (NBR)	-20°C to +80°C (NBR)	-20°C to +60°C (NBR)	-20°C to +80°C (NBR)	−20°C to +80°C (NBR)	+20°C to +60°C (NBR)	-20°C to +80° (NBR) +5°C to +50°C (PP body)
Seal material	H	FKM, EPDM	NBR	NBR, FKM	NBR	NBR, FKM	NBR, FKM	NBR	NBR, FKM, SI, EPDM
Connection	Manual	0	Z	0		5			0
method	Push-to-connect	Nº I	0	2	0	0	0	AX	
	Two-way shut-off	00	0			\mathcal{N}			
Valve	Two-way shut-off (Non-Spill)		. 12						7
structure	One-way shut-off		0	0	0	0	0		
	Straight through	1	0	0 6		0	0		0
Detailed inform	nation page	27	29	35	57	69	71	72	73

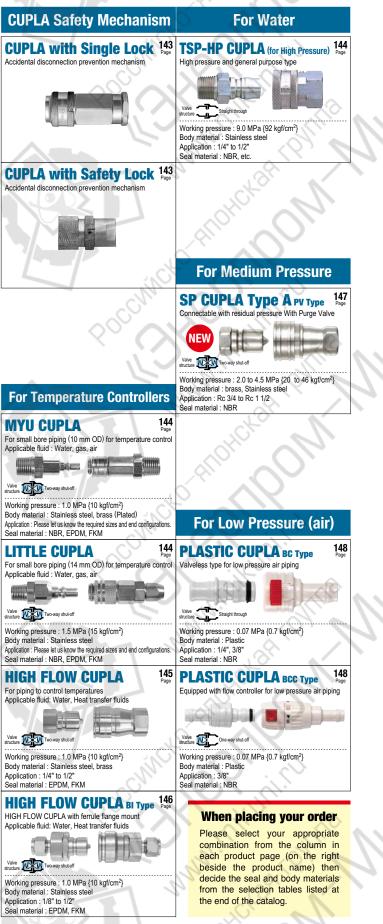
Applicable fluid		For	Medium Pressur	e / For Low Pres	sure	For Medium Pressure		For High Pressure	
Name	CNIN	TSP CUPLA	TSP CUPLA with Ball Valve	SP CUPLA Type A	HOT WATER CUPLA HW Type	ZEROSPILL Cupla	HSP CUPLA HYPER HSP CUPLA	210 CUPLA	
Photo			~	ALC: NO					
	Brass	5.0, 3.0, 2.0, 1.5	1.0	5.0, 3.0, 2.0, 1.5	2.0	3.5			
Body material	Stainless steel	7.5, 4.5, 3.0, 2.0	S ^C	7.5, 4.5, 3.0, 2.0		3.5		<u></u> 0	
• Working	Steel	7.5, 4.5, 3.0, 2.0		7.5, 4.5, 3.0, 2.0			20.6, 18.0, 14.0	20.6	20.6
pressure (MPa)	Plastic								
le e p	Others	4	\sim			2			7 5
Body surface t	reatment	Nickel plated (Steel only)		Nickel plated (Steel only)	Nickel plated	Σ_{L}	Nickel plated	Nickel plated	Nickel plate
-	1/8"	0	L.	0	J.				
	1/4"	0	0	0	0	0	0	0	0
<u> </u>	5/16"	n'	.0					5	jp.
	3/8"	0	0	0	0	0	0	0	0
	1/2"	0	0	0	0	0	0	000	0
	3/4"	0	0	0		0	0	0	0
Size	1"	0	0	0		0	0	0	0
	1 1/4"	<u>, (</u> 0	\sim	0			0		
	1 1/2"	0		0		1/			1
	2"	0		0			0		
	2 1/2"		J.						
	3"			<u>_</u>)			
	4"	· ·							to,
	Others	0							- Christ
Working tempe	erature range	-20°C to +80°C (NBR)	-5°C to +120°C (FKM)	-20°C to +80°C (NBR)	–20°C to +180°C (FKM)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80° (NBR)
Seal material		NBR, FKM, EPDM	FKM	NBR, FKM, EPDM	FKM	NBR, FKM, EPDM	NBR, FKM	NBR	NBR, FKM
Connection method	Manual Push-to-connect		0	0	0	0	0	0	0
	Two-way shut-off	.0)		0	0	\sim	0	0	0
Valve	Two-way shut-off (Non-Spill)		1)	~		0			
structure	One-way shut-off	$\sum \delta$	0	1° 1	11				J.
Straight through		0	, d	5 6			~		'ng
Detailed inform	nation page	77	79	81	83	85	87	89	91

This chart will let you quickly select an appropriate CUPLA for your application. For technical data, please refer to the detailed information pages of each product, Seal Material Selection Table and Body Material Selection Table at the end of this catalog.

Applicable fluid		, Ó			For High	Pressure			
Name		HSU CUPLA	S210 CUPLA	280 CUPLA	350 CUPLA	FLAT FACE Cupla F35	FLAT FACE Cupla FF	450B CUPLA	700R CUPLA
Photo	2000 U								
	Brass	5	- A						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Body material	Stainless steel	21.0	20.6						$\sim O$
Working	Steel		Ø. (31.5, 27.5	34.5	35	35	44.1	68.6
pressure (MPa)	Plastic			\sim					
	Others	et 2							-
Body surface tr	reatment	M-C	$\frac{2}{3}$	Bright chromate conversion coating	Nickel plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated
	1/8"	2 N	·L'	0	J.	1		M-1	
	1/4"	0	0	0	0	0			
	5/16"	2 3		00			4		1è.
	3/8"	0	0_0	0	0	0	0	0	0
	1/2"	0	0	0	0	0	0	<	0
	3/4"	0	0	0	0	0	0		
Size	-1"	0 🔬	0	00	0	0	0		C
5126	1 1/4"	JÓ.			0	1			
	1 1/2"	in all			0			A	
	2"								
	2 1/2"	$\sim \sim \sim$	19		~			XX-	
	3"		alt -	6	2	\sim			
	4"				UU		L		
	Others		-	99					
Working tempe	rature range	-20°C to +120°C (HNBR)	–20°C to +180°C (FKM)	-20°C to +80°C (NBR)	–20°C to +180°C (FKM)	–20°C to +180°C (FKM)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)	-20°C to +80°C (NBR)
Seal material	1	HNBR	FKM, NBR	NBR	FKM, NBR	FKM, NBR	NBR	NBR, FKM	NBR, FKM
Connection	Manual	0	0	0		3		0	0
mothod	Push-to-connect	in n		2	0	0	0	1	
	Two-way shut-off	0	0	0		N.		0	0
Valve	Two-way shut-off (Non-Spill)		U.	~	0	0	0		7
structure	One-way shut-off		di		11.0		1		
	Straight through	1.		- Co.			4		15
		- 11			1. The P.				P.71 .

13 NITTO KOHKI CO., LTD. CUPLA DURK

Applicable fluid		For Multi	-Port Connectior	I (Manual)		For Multi-	Port Connection	(Automatic)	Š
Name		MULTI CUPLA MAM Type	MULTI CUPLA MAM-B Type	MULTI CUPLA MAM-A Type	MULTI CUPLA MAS Type	MULTI CUPLA Mat Type	MULTI CUPLA MALC-01 Type	MULTI CUPLA MALC-SP Type	MULTI CUPLA Malc-HSP Type
Photo				E C		1	*		
	Brass	0.7	1.0	1.0			1.0		CONT.
Body material	Stainless steel		<u> </u>		7.0	7.0		7.5, 5.0, 1.5	
• Working	Steel								25.0, 21.0
pressure (MPa)	Plastic	<u>A</u>							
le se p	Others	£0 -	\sim			2			1
Body surface t	reatment	Chrome plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated
-	1/8"	0	20	<u>A</u>	1		0	1-0	0
	1/4") (0	0	0	0	7.	0	0
~	5/16"	, p.		501			-	J	je.
	3/8"	S.	<u>A</u>	0	0	0		0	0
A	1/2"	<i>A</i> .	L	0	0	0		000	0
	3/4"	6.			0	0		0	0
Size	1")	0	0		0	0
Size	1 1/4"	. O.	\sim						
	1 1/2"	5				. 11		0	7
	2"							22	
	2 1/2"	\mathcal{N}	131 -					1	
	3"		1	<u>_</u>					
	4"	· la							5
	Others	S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	0
Working tempe	erature range	-20°C to +60°C (NBR)	-20°C to +180°C (FKM)	–20°C to +180°C (FKM)	-20°C to +180°C (FKM)	-20°C to +180°C (FKM)	-20°C to +80°C (NBR)	–20°C to +180°C (FKM)	–20°C to +180° (FKM)
Seal material		NBR	NBR FKM	FKM	FKM	FKM	NBR	FKM	FKM
Connection	Manual	. to	XX.			5			12 1
method	Push-to-connect	· · · · ·		>		$\mathcal{I}\mathcal{L}$	Xd		1
	Two-way shut-off		0	0	0	0			1
Valve	Two-way shut-off (Non-Spill)		12	<u> </u>				-0	0
structure	One-way shut-off	0					0		J.
	Straight through	· D.							ni,
Detailed inform	nation page	107	109	113	117	117	119	121	125


This chart will let you quickly select an appropriate CUPLA for your application. For technical data, please refer to the detailed information pages of each product, Seal Material Selection Table and Body Material Selection Table at the end of this catalog.

Applicable flui	d	0,		For High Puri	ity Chemicals			For Inert Gas	and Vacuum
Name		SEMICON CUPLA SP Type	SEMICON CUPLA SCS Type	SEMICON CUPLA SCY Type	SEMICON CUPLA SCT Type	SEMICON CUPLA SCAL Type	SEMICON CUPLA SCF Type	SP-V CUPLA	PCV PIPE CUPLA
Photo				HE					CT ON
	Brass	- D	2					5.0, 3.0	4.5
Body material	Stainless steel	0.2	0.2	0.2				7.5, 4.5	
• Working	Steel		0 (
pressure (MPa)	Plastic				0.2	0.2	0.2		
	Others	to							-
Body surface t	reatment	Electropolished	Electropolished	Electropolished	-	14).	T		
	1/8"	0		0	J.	2		MH	
	1/4"	0	0	0	0	0		0	0
	5/16"	2 5		0			4		Ú.
	3/8"	0	0_0	0	0	0	0	0	0
	1/2"	0	0_0	0	0	0	0	0	\sim
	3/4"	0	0	0	0	0		0	
Size	1"	0 6	0	0	0	0			<u> </u>
1	1 1/4"	0,							
	1 1/2"	10				0			
	2"								
	2 1/2"	\sim						<u>M-</u>	
	3"			<u></u>		~)			
	4"						~		
Working tempe	Others erature range	0°C to +50°C (FKM)	0°C to +50°C (P)	0°C to +50°C (P)	+5°C to +50°C (FKM)	+5°C to +50°C (FKM)	○ +5°C to +50°C (FKM)	-20°C to +80°C (CR)	-20°C to +80°((CR)
Seal material		FKM, EPDM, P, KL	P (0-ring for socket)	P, PTFE (Packing seal for socket)	FEP-coated FKM	P (0-ring for socket)	FEP-coated FKM	CR, FKM, HNBR	CR, FKM, HNBR
Connection	Manual	D	0	0	0			0	0
method	Push-to-connect	in a	\bigcirc	2		0	0		
	Two-way shut-off		0	0	0		0	0	
Valve	Two-way shut-off (Non-Spill)		. 12			0		M	7
structure	One-way shut-off		d''	ALC.	1110				
	Straight through	1		0 6	114		1		0
Detailed inform	nation page	129	130	131	132	133	134	135	137

Applicable flui	d	For Paint	For Food	
Name		PAINT CUPLA	HYGIENIC CUPLA Easy Wash Type	
Photo	Poce			
	Brass	2	2	
Body material • Working	Stainless steel Steel	1.0 (Plug)	1.0	
pressure (MPa)	Plastic			
	Others	1.0 (Socket)	$\langle \rangle$	
Body surface t	reatment	M - O	Buff finish #400 (liquid contact part	
	1/8" 1/4" 5/16"			
	3/8" 1/2"	0	A CO	
Size	3/4" 1"	Á		
Size	1 1/4" 1 1/2"	NCLO		
	2" 2 1/2"			
	3" 4"			
	Others	0°C to +50°C	0°C to +110°C	
Working tempe	erature range	(PFA)	(SI)	
Seal material		PFA	SI, FKM, EPDM	
Connection method	Manual Push-to-connect	0	0	
Valve structure	Two-way shut-off Two-way shut-off _(Non-Spill) One-way shut-off			
	Straight through		\cap	
	in the second		\sim	

Semi-standard CUPLA Series

"Semi-standard CUPLA Series" are products with an already established record but are not standard stock items.

Accessories

Special Made-to-Order CUPLA

Nitto Kohki is developing couplings with various functions and specifications to suit respective user's applications. The CUPLA products on this page are examples of such. Special made-to-order couplings are supplied based upon the specific instructions / specifications detailed by the customer. Once written acceptance of our final drawing / specifications of the CUPLA is received from the customer we formally accept this as a final order. It is essential, as the customer, to carry out a performance test of the special made-to-order CUPLA, in its specific usage conditions, for assurance of safety and adaptability to the hoses, pipes or devices used in the application. Use of the made-to-order CUPLA in any application or condition other than those specified in the design drawing, will exclude Nitto Kohki from any liabilities for any special, indirect or consequential loss or damages. Important notice For Gases and Liquids For Inert Gas and Vacuum **Automatic MULTI CUPLA** For Inert Gases For High Purity Chemicals (PIPE CUPLA Serie SEMICON CUPLA SML Type CHARGE CUPLA CS TYPE PCB CUPLA PCA CUPLA MULTI CUPLA AMCS-FA Type For industrial gases For expanded pipes Pipes for high pressure line For semiconductor manufacturing equipment Full automatic operation type Connectable to SP-V CUPLA plugs -3 Contractory of the local division of the loc Valve structure Two-way shut-_____ Working pressure : 3.0 MPa {31 kgf/cm²} Body material : Stainless steel (part Aluminum alloy and Brass) Application : 1/4" Seal material : CR, HNBR Working pressure : To be defined after consultation Body material : Brass (part Stainless steel) Pipe sizes : To be complied with your requirements Seal material : CR, FKM, NBR Working pressure : To be defined after consultation. Body material : Brass (part Stainless steel and Steel) Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Working pressure : 0.2 MPa {2 kgf/cm²} Body material : Stainless steel Application : 1/8", 1/4" Seal material : FKM, EPDM, others Working press Body material Application To be decided after consultation Seal material CHARGE CUPLA CNR Type **PCBW CUPLA** PCIO CUPLA SEMICON CUPLA SCF Straight Type **MULTI CUPLA** AMCS-SA Type For industrial gases Connectable to SP-V CUPLA plugs For bulged pipes and spool pipes For pipes that have inner locking system For semiconductor manufacturing equipment Semi-automatic type see page 134 Valve structure Valve Straight through Valve Valve structure Valve tructure Straight through Working pressure : 4.5 MPa {46 kgf/cm²} Body material : Stainless steel (part Aluminum alloy and Brass) Working pressure : 0.2 MPa {2 kgf/cm²} Body material : Fluorine contained resin Working pressure : To be defined after consultation Body material : Brass (part Stainless steel) Working pressure : To be defined after consultation. Body material : Stainless steel (part Brass) Working pre To be decided after Body material Application : 1/4", 3/8", 1/2" Seal material : CR, HNBR Pipe sizes : To be complied with your requirements Seal material : CR, FKM, NBR Pipe sizes : To be complied with your requirements Seal material : CR, FKM, NBR Application : 3/8", 1/2" Seal material : FEP-coated FKM, Fluoro-resi Application Seal material consultation. AUTO CUPLA AC Type PCP CUPLA PCD CUPLA For industrial gases Connectable to SP-V CUPLA plugs For pipes of special shapes For bulged pipes and spool pipes Contain P 100 Valve structure 4 s. Working pressure : 3.0 MPa {31 kgf/cm²} Portv material : Stainless steel (part Aluminum alloy and Brass) Working pressure : To be defined after consultation. Body material : POM (Polyacetal), part Stainless steel Pipe sizes : To be complied with your requirements. Working pressure : To be defined after consultation. Body material : Stainless steel (part Aluminum alloy) Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Body material : Stainless steel (part Application : 1/4", 3/8" **For Water** Seal material : CR, HNBR, NBR Seal material : CR, FKM, NBR AUTO CUPLA ACV Type PCBL CUPLA **AUTO CUPLA AIRLESS CUPLA** For industrial gases For straight pipes For physical and chemical devices For copper pipes Connectable to SP-V CUPLA plugs Cathor Valve structure Valve tructure alve Working pressure : 3.0 MPa {31 kgf/cm²} Working pressure : 3.0 MPa {31 kgf/cm²} Working pressure : To be defined after consultation Working pressure : To be defined after consultation. ess steel (part Aluminum alloy and Brass) Body material : Stainless steel (part Brass) Body material : Stainless ste Application : 1/4" to 1" Seal material : FKM, EPDM Body material : Stainless Application : 1/4". 3/8" Body ma erial · Stainless steel (nart Brass) Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Seal material : CR, HNBR, NBR AIRLESS CUPLA CNA Type PCL CUPLA SCREW CUPLA PCS Type For industrial gases For straight pipes For vacuum and pressure testing Please consult with us for larger sizes Valve -T Valve Valve structure Straight through _0_ -94 Working pressure : 3.0 MPa {31 kgf/cm²} Body material : Steel (part Stainless steel) Application : 7/16" to 7/8" Working pressure : 3.0 MPa {31 kgf/cm²} Body material : Stainless steel Norking pressure : To be defined after consultation. Body material : Brass (part Steel) **Safety Equipment For Manipulators** Application : 3/8" Seal material : CR, HNBR Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Seal material : CR, NBR, FKM PCW CUPLA **MP CUPLA** AUTOMATIC DISCONNECTION CUPLA For manipulators For fail safe system and automatic connection/ For straight pipes disconnection applications (R) falve Valve tructure Valve www. traight through -11-Working pressure : To be defined after consultation. Body material : Brass (part Stainless steel and Steel) Pipe sizes : To be complied with your requirements. Seal material : CR, FKM, NBR Working pressure : 5.0 MPa {51 kgf/cm²} Body material : Stainless steel Application : 1/4" to 1" Seal material : FKM, others Working pre Body material Application Seal material To be decided after For Pneumatics and Hydraulics consultation SCREW CUPLA NCM Type For connecting pneumatic/hydraulic lines March! When placing your order Valve Please ask about the details, since the CUPLA products in this Working pressure : 14.0 MPa {142 kgf/cm²} Body material : Steel (Plated)

Application : 1/8" to 1" Seal material : NBR

vn-anni

group are special made-to-order

items.

HI CUPLA Series Interchangeability

Following plugs and sockets can be connected with each other

	Plug		
Туре	Model	<	\sim
HI CUPLA	17PH, 20PH, 30PH, 40PH 10PM, 20PM, 30PM, 40PM 20PF, 30PF, 40PF 20PFF 60PC, 80PC, 100PC 90PN-BH		MILE N
NUT CUPLA	50PN (10PAH), 60PN (20PAH), 65PN 80PN (30PAH), 85PN, 110PN (40PAH) 50PNG, 65PNG, 85PNG	A	
HI CUPLA ACE	20PH-PLA, 30PH-PLA 20PM-PLA, 30PM-PLA 50PN-PLA, 60PN-PLA, 65PN-PLA, 80PN 20PFF-PLA 50PNG-PLA, 65PNG-PLA, 85PNG-PLA	-PLA, 85PN-PLA	<u>,</u>
ROTARY PLUG	RL-20PM, RL-30PM RL-20PFF	Can be connect	
TWIST PLUG	TS-10PM, TS-20PM, TS-30PM TS-20PFF	with each othe	
PURGE PLUG	PV-20PH, PV-30PH, PV-40PH PV-65PN, PV-85PN	10	
ANTI-VIBRATION PLUG HOSE	SHA-3-2R, SHA-3-3R	S	\mathcal{N}
NK CUPLA HOSE	NKU-605B, NKU-610B, NKU-620B NKU-810B, NKU-820B	(65PNG) (85PNG)	
NK CUPLA COIL HOSE	NKC-503B, NKC-505B NKC-603B, NKC-605B	(50PNG) (65PNG)	Ń
ROTARY Line Cupla	RT Type (Inlet Port)	Č C	\mathcal{O} .
LINE CUPLA 200	200T Type (Inlet Port)	\sim	
ROTARY FULL-BLOW Line Cupla	FBH-RT Type (Inlet Port)	11)	
HI CUPLA ACE T TYPE	HA-T Type (Inlet Port)	2.5	2
ACCESSORIES FOR AIR LINES	DC-30PF, PG-10P	JU.	
SUPER CUPLA	02S20P (End Configuration)		~

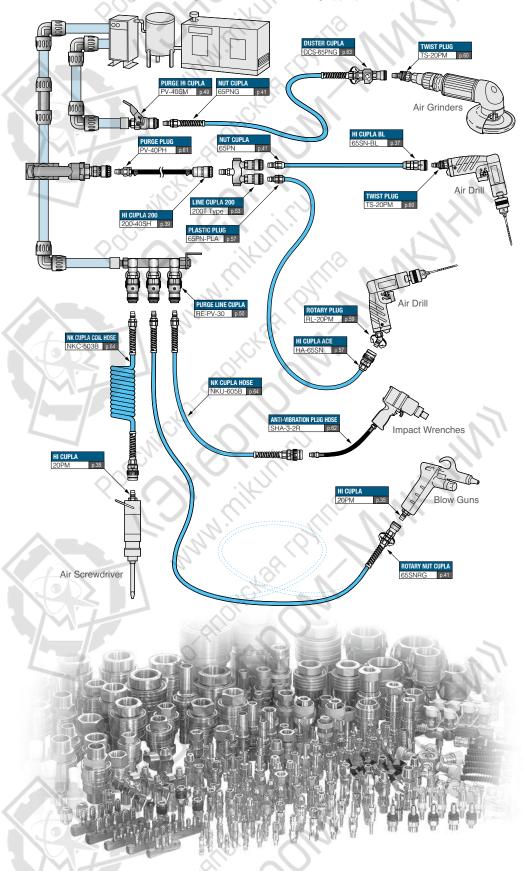
Socket	
Model	Туре
17SH, 20SH, 30SH, 40SH 10SM, 20SM, 30SM, 40SM 20SF, 30SF, 40SF 90SN-BH	HI CUPLA
20SH-BL, 30SH-BL, 40SH-BL 20SM-BL, 30SM-BL, 40SM-BL 20SF-BL, 30SF-BL, 40SF-BL 65SN-BL, 80SN-BL, 85SN-BL	HI CUPLA BL
TW20SH, TW30SH, TW40SH TW20SM, TW30SM, TW40SM TW20SF, TW30SF, TW40SF	HI CUPLA TW Type
200-17SH, 200-20SH, 200-30SH, 200-40SH 200-20SM, 200-30SM, 200-40SM 200-20SF, 200-30SF, 200-40SF 200-60SC, 200-80SC, 200-100SC	HI CUPLA 200
FBH-20SH, FBH-30SH, FBH-40SH FBH-20SM, FBH-30SM, FBH-40SM FBH-20SF, FBH-30SF, FBH-40SF FBH-65SN, FBH-80SN, FBH-85SN, FBH-110SN	FULL-BLOW CUPLA
50SN (10SAH), 60SN (20SAH), 65SN 80SN (30SAH), 85SN, 110SN (40SAH)	NUT CUPLA
200-50SN, 200-60SN, 200-65SN, 200-80SN 200-85SN, 200-110SN 200-50SNG, 200-65SNG, 200-85SNG	NUT CUPLA 200
65SNR, 85SNR 65SNRG, 85SNRG	ROTARY NUT CUPLA
DCS-20PH, DCS-30PH, DCS-40PH DCS-65PNG, DCS-85PNG	DUSTER CUPLA
L200-20SH, L200-30SH, L200-40SH L200-20SM, L200-30SM, L200-40SM L200-20SF, L200-30SF, L200-40SF	LOCK CUPLA 200
L200-65SNRG, L200-85SNRG PV-20SM, PV-30SM, PV-40SM	PURGE HI CUPLA
RE-PV-30 (Outlet Port)	PURGE LINE CUPLA
RT Type (Outlet Port), RE Type (Outlet Port)	ROTARY LINE CUPLA
200T Type (Outlet Port), 200L Type (Outlet Port), 200S Type (Outlet Port)	LINE CUPLA 200
FBH-RE Type (Outlet Port), FBH-RT Type (Outlet	ROTARY FULL-BLOW LINE CUPLA
HA-20SH, HA-30SH HA-20SM, HA-30SM, HA-50SN, HA-60SN HA-65SN, HA-80SN, HA-85SN HA-T Type (Outlet Port) HA-50SNG, HA-65SNG, HA-85SNG	HI CUPLA ACE
NKU-605B, NKU-610B, NKU-620B (HA-6	SSNG) NK CUPLA HOSE
NKC-503B, NKC-505B (HA-5	505NG) 55SNG) NK CUPLA COIL HOSE

Socket

Not interchangeable

Туре	Model		Model	Туре
HI CUPLA	400PH, 600PH, 800PH 400PM, 600PM, 800PM 400PF, 600PF, 800PF	Can be connected with each other	400SH, 600SH, 800SH 400SM, 600SM, 800SM 400SF, 600SF, 800SF	HI CUPLA
LINE CUPLA 200	200L Type (Inlet Port) 200S Type (Inlet Port)		PV-400SM, PV-600SM	PURGE HI CUPLA
X ()	G ,		PVR-400SH, PVR-600SH, PVR-800SH	PURGE HI CUPLA
		10	PVR-400SM, PVR-600SM, PVR-800SM	PURGE HI CUPLA PVR Type
).	PVR-400SF, PVR-600SF, PVR-800SF	rvniype

Plug


Standard CUPLA Series

Index

Examples of air line connections using HI CUPLA group models

Air distribution is one of the typical piping systems. Various HI CUPLA Series models meet all needs of air piping from main supply, relays in factories, pipe end connections to pneumatic tools, and those of air piping within equipment. The following sketch gives you some examples of air piping using HI CUPLA Series and may serve as a good reference in selecting appropriate CUPLA products.

	4	Dealershi	
1	4	Product Name	Page
1	2	210 CUPLA	91
	3	280 CUPLA 350 CUPLA	97
	4	450B CUPLA	99 105
		700R CUPLA	105
ł	_	ANTI-VIBRATION PLUG HOSE	62
		COMPACT CUPLA	27
	- 1	CUBE CUPLA NEW	29
	D	DUSTER CUPLA	63
j	F	FLAT FACE CUPLA F35	101
		FLAT FACE CUPLA FF	102
		FLOW METER	72
		FULL-BLOW CUPLA	45
	Н	HI CUPLA	35
		HI CUPLA 200	39
		HI CUPLA ACE	57
		HI CUPLA BL	37
		HI CUPLA for Connection to Braided Hoses	41
		HI CUPLA Two Way Type	44
		HOT WATER CUPLA HW Type	83
		HSP CUPLA	87
		HSU CUPLA	93
	Ν	HYGIENIC CUPLA	141
	н	HYPER HSP CUPLA LEVER LOCK CUPLA Metal Body	89
ď		LEVER LOCK CUPLA Metal Body	73
		LINE CUPLA 200	73 53
	- 4	LOCK CUPLA 200	43
	м	MICRO CUPLA	21
		MINI CUPLA	65
		MINI CUPLA SUPER	67
		MOLD CUPLA	69
		MOLD CUPLA High Flow Type	71
		MULTI CUPLA MALC-01 Type	119
		MULTI CUPLA MALC-HSP Type	125
		MULTI CUPLA MALC-SP Type	121
		MULTI CUPLA MAM-A Type	113
		MULTI CUPLA MAM-B Type	109
	Δ	MULTI CUPLA MAM Type	107
		MULTI CUPLA MAS Type	117
	_	MULTI CUPLA MAT Type	117
	Ν	NK CUPLA COIL HOSE	64
		NK CUPLA HOSE	64
		NUT CUPLA	41
		NUT CUPLA 200	41
	Ρ	PAINT CUPLA	139
		PCV PIPE CUPLA PURGE HI CUPLA	137 49
	- /ł	PURGE HI CUPLA PVR Type	49
		PURGE LINE CUPLA	50
		PURGE PLUG	61
	R	ROTARY FULL-BLOW LINE CUPLA	55
		ROTARY LINE CUPLA	51
		ROTARY NUT CUPLA	41
		ROTARY PLUG	59
	S	S210 CUPLA	95
		SEMICON CUPLA SCAL Type	133
		SEMICON CUPLA SCF Type	134
	Δ	SEMICON CUPLA SP Type	129
		SEMICON CUPLA SCS Type	130
		SEMICON CUPLA SCT Type	132
		SEMICON CUPLA SCY Type	131
	N	SMALL CUPLA	25
		SP CUPLA Type A	81
		SP-V CUPLA	135
	7	SUPER CUPLA	33
	1	TSP CUPLA	77
		TSP CUPLA with Ball Valve TWIST PLUG	79 60
	z	ZEROSPILL CUPLA	60 85
	ک		00
		0	<
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

## **For Low Pressure**

# **MICRO CUPLA**

### For piping in pneumatic control devices



# Compact, lightweight CUPLA with only 9.5 mm outer diameter. Push-to-connect operation. Tube Fitter type for even easier tube insertion.

- Even though the valve is built in the socket, the sleeve outer diameter is confined to 9.5 mm.
- Push-to-connect design.
- Compact design for piping in narrow spaces.
- Plated brass and stainless steel bodies are available for excellent corrosion resistance.
- Available in various end configurations to satisfy a wide range of pneumatic applications.
- Note: Fluid will flow out from the plug side when disconnected. Take necessary precaution if the fluid is water.

Speci	fications								
Body ma	iterial		,	Stainless steel (S ass (Plated) , Pla					
	Thread		1/8" , N	M5 x 0.8					
Size	Tube barb (Tube fitter)	Tube ID ø3, ø4 Polyurethane tube: Outside Dia. ø4 ± 0.1, ø6 ± 0.1 Polyamide tube: Outside Dia. ø4 $^{+0.05}_{-0.08}$ , ø6 $^{+0.05}_{-0.08}$ Fluorine contained resin tube: Outside Dia. ø4 ± 0.05, ø6 ± 0.							
Pressure	e unit	MPa	kgf/cm ²	bar	PSI				
Working	pressure	1.0	10	10	145				
Soal mai	torial	Seal material	Mark	Working temperature range	Remarks				
Seal material Working temperature range		Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard material				
		Fluoro rubber	FKM (X-100)	-20°C to +180°C	Made-to-order item(s)				

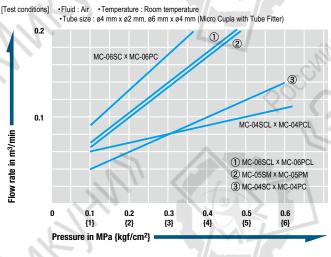
Above specifications apply only to CUPLA. Maximum working pressure and working temperature range may vary depending on tube materials you use with and the working temperature. CUPLA with Tube Fitter has NBR packing material only.

Maximum Tightening Torque		Nm {kgf•cm}	
Size (Th	read)	M5×0.8	R 1/8
Torquo	Brass	1.3 {13}	5 {51}
Torque Stain	Stainless steel	1.0 [10]	7 {71}

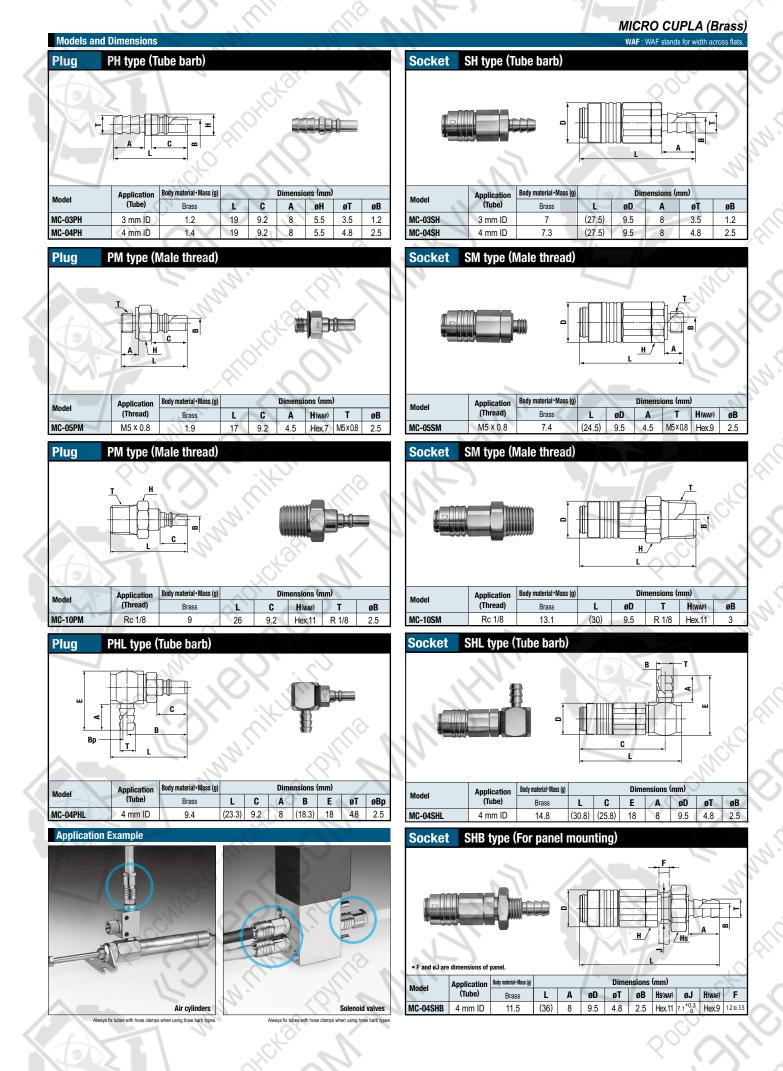
#### **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.



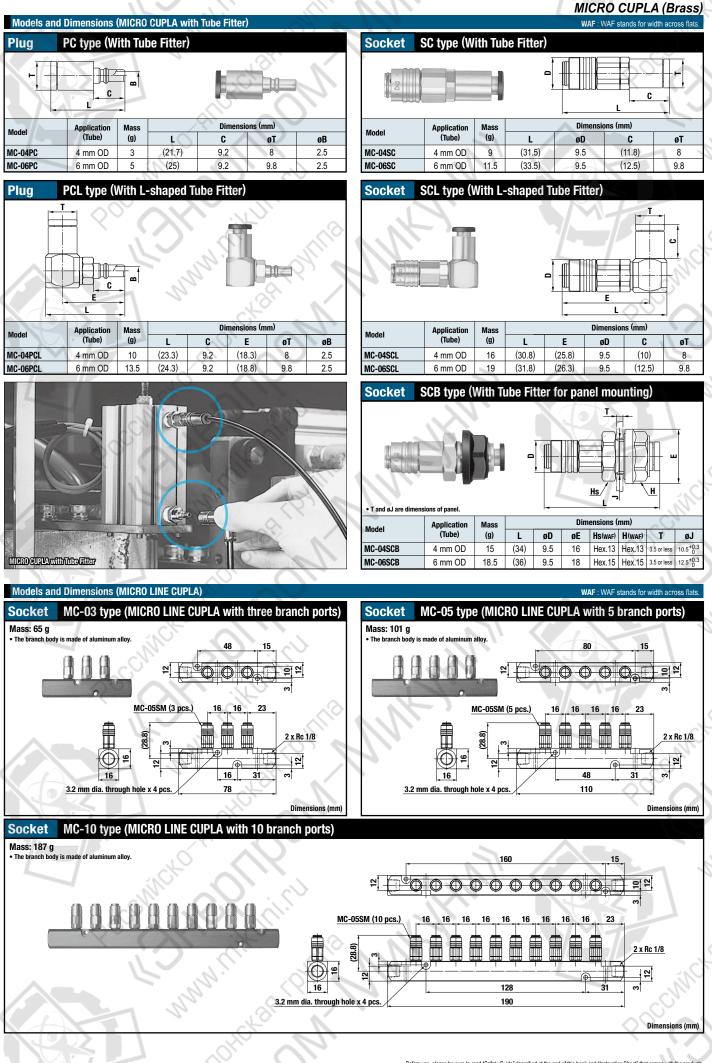

#### Interchangeability

Sockets and plugs can be connected regardless of end configurations.


Minimum Cross-Sectional Area					(mm²)	
Model	MC-03SP	MC-04SP	MC-05SP	MC-10SP	Tube Fitter Type for 4 mm OD tube	Tube Fitter Type for 6 mm OD tube
Min. cross-sectional area	1.1	4.9	4.9	4.9	4.9	4.9

Suitability for Vacuum		53.0 kPa {400 mmHg}
Socket only	Plug only	When connected
		Operational

#### Pressure - Flow Characteristics








Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produc

DULEK CUPLA NITTO KOHKI CO., LTD. 22



²³ NITTO KOHKI CO., LTD. CUPLA DURK COMPLET

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

### MICRO CUPLA (Stainless Steel Models)

# **MICRO CUPLA**

**Stainless Steel Models** 

**Highly Corrosion-resistant Stainless Steel MICRO CUPLA**  Built-in automatic shut-off valve

9.5 mm OD sleeve

Push-to-connect design

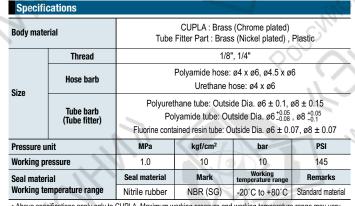
Wide variety of end configurations



CUPLA NITTO KOHKI CO., LTD. 24

# **For Low Pressure**

# **SMALL CUPLA**


Lightweight and compact for use on air lines and scientific equipment

insuitable for water



# Lightweight and compact push-toconnect operation. Responding to requirements of modular combinations.

- Compact socket with built-in valve and 14 mm OD sleeve. Suits applications calling for compact and modular components.
- Just push in the plug to the socket for connection by easy one hand operation.
- Plated brass for corrosion resistance adopted for the body. Stable performance for long life.
- A wide line-up of end configurations (female and male threads, hose barbs, manifolds) enables suitability with a wide range of piping applications such as pneumatic, scientific and medical equipment.
- Also available with quick connect/disconnect Tube Fitter type.
- Note: Fluid will flow out from the plug side when disconnected. Take necessary precaution if the fluid is water.



Above specifications apply only to CUPLA. Maximum working pressure and working temperature range may vary
depending on tube materials you use with and the working temperature.

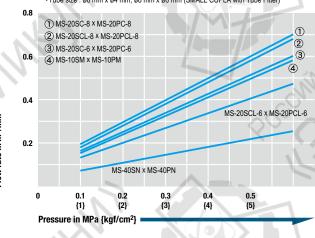
Maximum Tightening To		Nm {kgf•cm}	
Size (Thread)	1/8"	1/4"	PN • SN Type
Torque	5 {51}	9 {92}	5 {51}

#### Flow Direction

Fluid flow can be bi-directional when socket and plug are connected

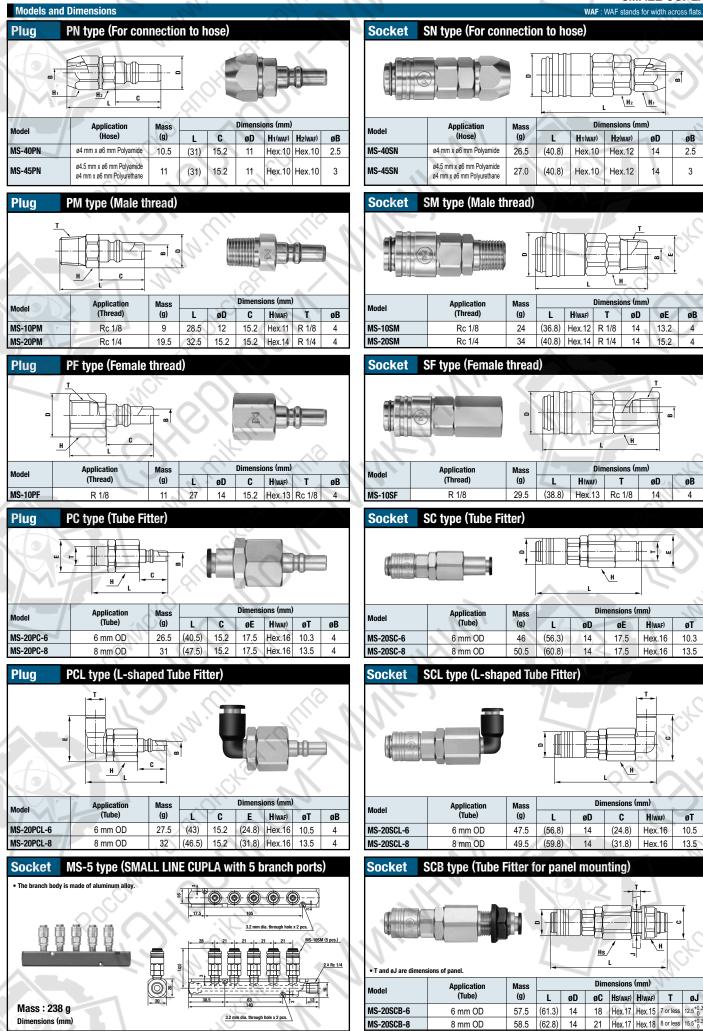


#### Interchangeability


Sockets and plugs can be connected regardless of end configurations.

Minimum Cross-Sectional Area					(mm²)	
Model	MS-10SM X MS-10PM	MS-20SM X MS-20PM	MS-40SN X MS-40PN	MS-45SN X MS-45PN	Tube Fitter Type for 6 mm OD tube	Tube Fitter Type for 8 mm OD tube
Minimum cross- sectional area	12.5	12.5	4.9	7	12.5	12.5

Suitability for Vacuum	53.0 kPa {400 mmHg}	
Socket only	Plug only	When connected
-	-	Operational


#### Pressure - Flow Characteristics

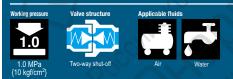
[Test conditions] •Fluid : Air •Temperature : Room temperature •Tube size : ø6 mm x ø4 mm, ø8 mm x ø6 mm (SMALL CUPLA with Tube Fitter)





SMALL CUPLA




Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

CURE CUPLA NITTO KOHKI CO., LTD. 26

## **For Low Pressure**

# **COMPACT CUPLA**

Small multipurpose type for low pressure lines



# Compact 17.5 mm outer diameter, yet socket and plug have built-in automatic shut-off valves.

- · Both socket and plug have built-in automatic shut-off valves.
- Compact size with maximum outer diameter 17.5 mm.
- For small bore piping from temperature control piping to scientific equipment.
- Body materials in stainless steel (SUS304) or brass, excellent in corrosion resistance.
- Four types of end configuration enable suitability with a wide range of piping applications.



Specif	fications				115		
Body mat	terial	E	ss steel (SUS 304)	CV.			
-	Thread	1/8"					
Size	Tube barb	F	e : ø4 x ø6, ø6 x ø8 e : ø4 x ø6, ø6 x ø8 sin tube : ø4 x ø6, ø	ø6 x ø8			
Pressure unit		MPa	kgf/cm ²	bar	PSI		
Working	pressure	1.0	10	10	145		
Seal material Working temperature range		Seal material	Mark	Working temperature range	Remarks		
		Fluoro rubber	FKM	-20°C to +180°C	Standard materia		
		Ethylene-propylene rubber	EPDM	-40°C to +150°C	Available on reques		

Note: Maximum working pressure and working temperature range of nut type depend on the tube material and its dimensional tolerance.

Maximum Tightening Torque		 Nm {	kgf∙cm}	
Size (Thr	ead)	1/8"	Tube barb	~
Tarauta	Brass	5 {51}	5 {51}	95
Torque	Stainless steel	9 {92}	7 {71}	Nr.

### Flow Direction

Fluid flow can be bi-directional when socket and plug are connected.



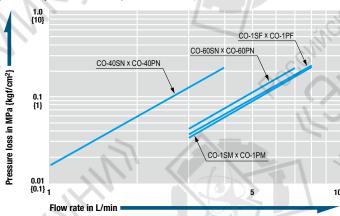
#### Interchangeabilit

Sockets and plugs can be connected regardless of end configurations.

Minimum Cross-Sectional Area				(mm²)
Model	CO-1SM × CO-1PM	CO-1SF × CO-1PF	CO-40SN × CO-40PN	CO-60SN × CO-60PN
Minimum cross-sectional area	8.8	8.8	4.9	8.8

Suitability for Vacuum	1.3	x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}
Socket only	Plug only	When connected
_	_	Operational

 Admixture of Air on Connection May vary depending upon the usage conditions.
 (mL)


 Volume of air admixture
 0.34

 Volume of Spillage per Disconnection. May vary depending upon the usage conditions.
 (mL)

 Volume of Spillage per Disconnection May vary depending upon the usage conditions.
 Output
 Out

Flow Rate – Pressure Loss Characteristics





27 NITTO KOHKI CO., LTD. CUPLA

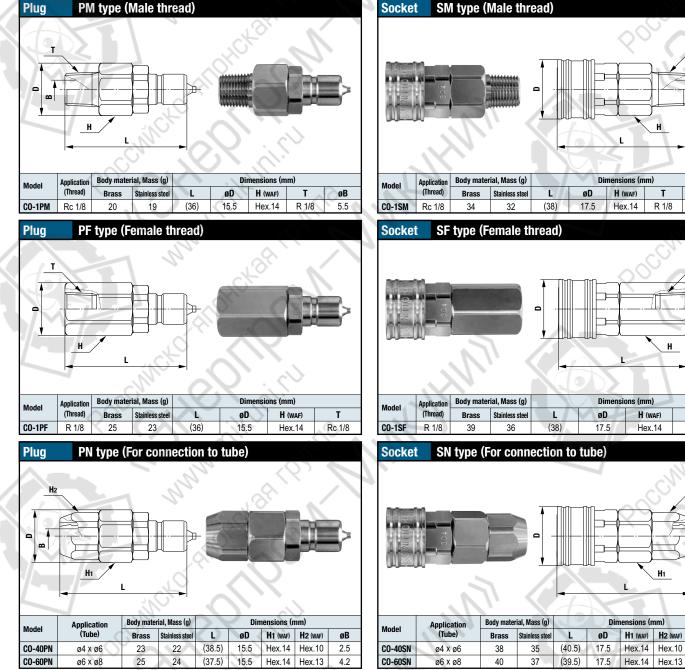


øB

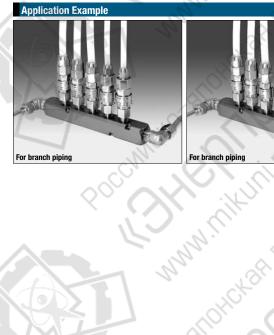
5.5

Н

Т


Rc 1/8

H2


øB

2.5

4.2



No difference in dimensions of brass and stainless steel CUPLA



Models and Dimensions



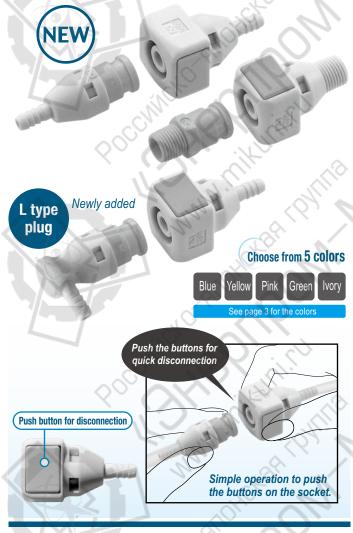
17.5 mm OD sleeve

Built-in automatic shut-off valve

Built-in automatic shut-off valve

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

## **For Low Pressure**


# **CUBE CUPLA**





# Both socket and plug have built-in valve types and valveless types. Simple one action for connection or disconnection. Lightweight plastic coupling.

- In all five color variations to prevent piping mistakes.
- Ultra-lightweight, made of polyacetal resin. Compact design for space saving.
- Just push plug into socket for connection. Simply press the button on the socket for disconnection.
- Two-way shut-off type with valve on both sides and straight through type with low pressure loss are available.
- L type plug ideal for piping in narrow spaces are available.
- Socket and plug cannot be disconnected unless two buttons on the socket are pressed simultaneously.



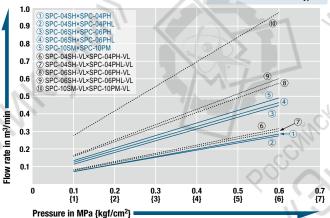
Specifications			States -	
Body material	Polyacetal resin (POM)			
Size	4 mm and 6 mm ID tube, 1/8"			
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.0	10	10	145
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia
Tightening Torque Rang	le			Nm {kgf•cm}
Size (Thread)	11	<u>,</u>	1/8	1
Torque	0.9 to 1.1 {9.2 to 11}			

Fluid flow can be bi-directional when socket and plug are connected.

# ntorohangoahility

Sockets and plugs can be connected regardless of end configurations. *Do not use in the combination of valved sockets and valveless plugs. The valve in the socket will not open and the fluid will not flow.

Co	onnection capability	Select the combination of mode	Is suitable to your applications
C	onnection capability	Plug	
	Valve	With	Without
Socket	With	Two-way shut-off	Not connectable
Soc	Without	One-way shut-off	Straight through


Note: When disconnected, the fluid from the valveless side will flow out. Take care if the fluid is water.

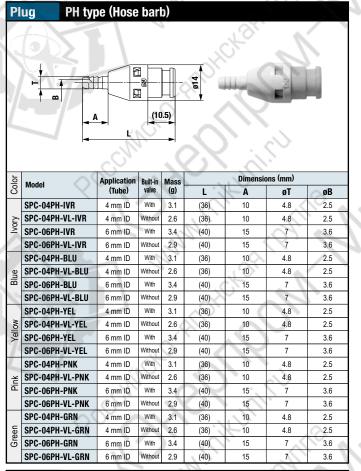
Minimum Cross-Sectiona	I Area (-V	'L means '	Valve less	type)	$\sim$	(mm²)
Model Plug / Socket	SPC-04SH	SPC-06SH	SPC-10SM	SPC-04SH -VL	SPC-06SH -VL	SPC-10SM -VL
SPC-04PH/PHB/PHL	5	5	5	5	5	5
SPC-06PH/PHB/PHL	5	8.6	8.6	5	8.6	8.6
SPC-10PM	5	8.6	8.6	5	8.6	8.6
SPC-04PH-VL/PHB-VL/PHL-VL	1	- /		5	5	5
SPC-06PH-VL/PHB-VL	14	_ < _	-7	5	10.2	10.2
SPC-06PHL-VL	<u>_</u>		(Ho	5	10.2	12.6
SPC-10PM-VL	-	-	1	5	10.2	16.6
Suitability for Vacuum				53.0	kPa /400	mmHal

		33.0 Ki a 1400 mining
Socket only	Plug only	When connected
. NF	- 14	Operational

Admixture of Air on	Connection May vary depending upon the usage conditions.	(mL)
Volume of air admixture	0.60 (Built-in valve type only)	Nr.
Volume of Spillage	per Disconnection May vary depending upon the usage conditions.	(mL)






29 NITTO KOHKI CO., LTD. CUPLA CUPARES

### **Models and Dimensions**

#### **CUBE CUPLA** WAF : WAF stands for width across flats

HÊ

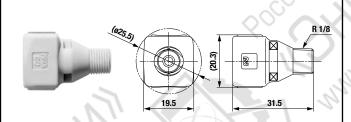
A



						1.1		
Color	Model	Application	Built-in	Mass	$\sim$	Dimensio	ons (mm)	
ပိ	Model	(Tube)	valve	(g)	/ L	A	ØT	øB
7	SPC-04SH-IVR	4 mm ID	With	6.5	35	10	4.8	2.5
lvory	SPC-04SH-VL-IVR	4 mm ID	Without	6.1	35	10	4.8	2.5
ž	SPC-06SH-IVR	6 mm ID	With	7.0	40	15	7	3.6
	SPC-06SH-VL-IVR	6 mm ID	Without	6.6	40	15	7	3.6
	SPC-04SH-BLU	4 mm ID	With	6.5	35	10	4.8	2.5
Blue	SPC-04SH-VL-BLU	4 mm ID	Without	6.1	35	10	4.8	2.5
B	SPC-06SH-BLU	6 mm ID	With	7.0	40	15	7	3.6
	SPC-06SH-VL-BLU	6 mm ID	Without	6.6	40	15	7	3.6
	SPC-04SH-YEL	4 mm ID	With	6.5	35	10	4.8	2.5
Yellow	SPC-04SH-VL-YEL	4 mm ID	Without	6.1	35	10	4.8	2.5
Yell	SPC-06SH-YEL	6 mm ID	With	7.0	40	15	7	3.6
	SPC-06SH-VL-YEL	6 mm ID	Without	6.6	40	15	7	3.6
	SPC-04SH-PNK	4 mm ID	With	6.5	35	10	4.8	2.5
Pink	SPC-04SH-VL-PNK	4 mm ID	Without	6.1	35	10	4.8	2.5
Ē	SPC-06SH-PNK	6 mm ID	With	7.0	40	15	7	3.6
	SPC-06SH-VL-PNK	6 mm ID	Without	6.6	40	15	7	3.6
	SPC-04SH-GRN	4 mm ID	With	6.5	35	10	4.8	2.5
Green	SPC-04SH-VL-GRN	4 mm ID	Without	6.1	35	10	4.8	2.5
Gre	SPC-06SH-GRN	6 mm ID	With	7.0	40	15	7	3.6
	SPC-06SH-VL-GRN	6 mm ID	Without	6.6	40	15	7	3.6

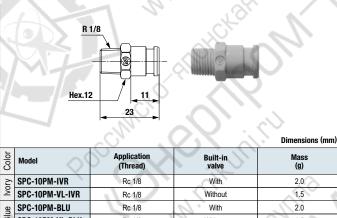
(20.3)

19.5


8

#### Socket SM type (Male thread)

Socket

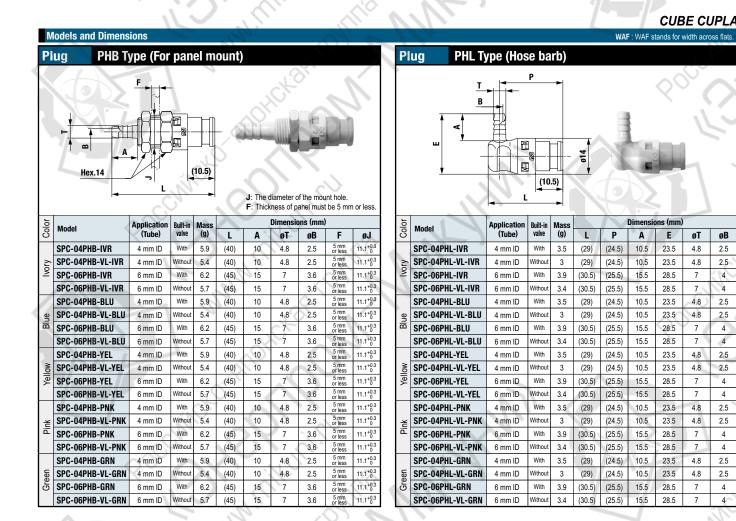

SH type (Hose barb)

(025.5)



I 1		· · · · · · · · · · · · · · · · · · ·		Dimensions (mr				
Color	Model	Application (Thread)	Built-in valve	Mass (g)				
lvory	SPC-10SM-IVR	Rc 1/8	With	6.8				
≥	SPC-10SM-VL-IVR	Rc 1/8	Without	6.4				
Blue	SPC-10SM-BLU	Rc 1/8	With	6.8				
	SPC-10SM-VL-BLU	Rc 1/8	Without	6.4				
Yellow	SPC-10SM-YEL	Rc 1/8	With	6.8				
Yel	SPC-10SM-VL-YEL	Rc 1/8	Without	6.4				
Pink	SPC-10SM-PNK	Rc 1/8	With	6.8				
	SPC-10SM-VL-PNK	Rc 1/8	Without	6.4				
Green	SPC-10SM-GRN	Rc 1/8	With	6.8				
Gr	SPC-10SM-VL-GRN	Rc 1/8	Without	6.4				

Plug PM type (Male thread)




lvory Blue SPC-10PM-VL-BLU Rc 1/8 Without 1.5 Yellow SPC-10PM-YEL With Rc 1/8 2.0 SPC-10PM-VL-YEL Rc 1/8 Without 1.5 SPC-10PM-PNK With Rc 1/8 2.0 Pink SPC-10PM-VL-PNK SPC-10PM-GRN SPC-10PM-VL-GRN

POCCIMICH

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the pr

**SCHMCH** 



The following E part shown below are colored. The other plastic parts are ivory. 'ellov

Socket

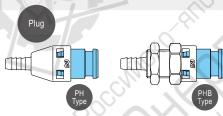
See page 3 for the colors

4

4

4

4


4

4

4

4

SM Type

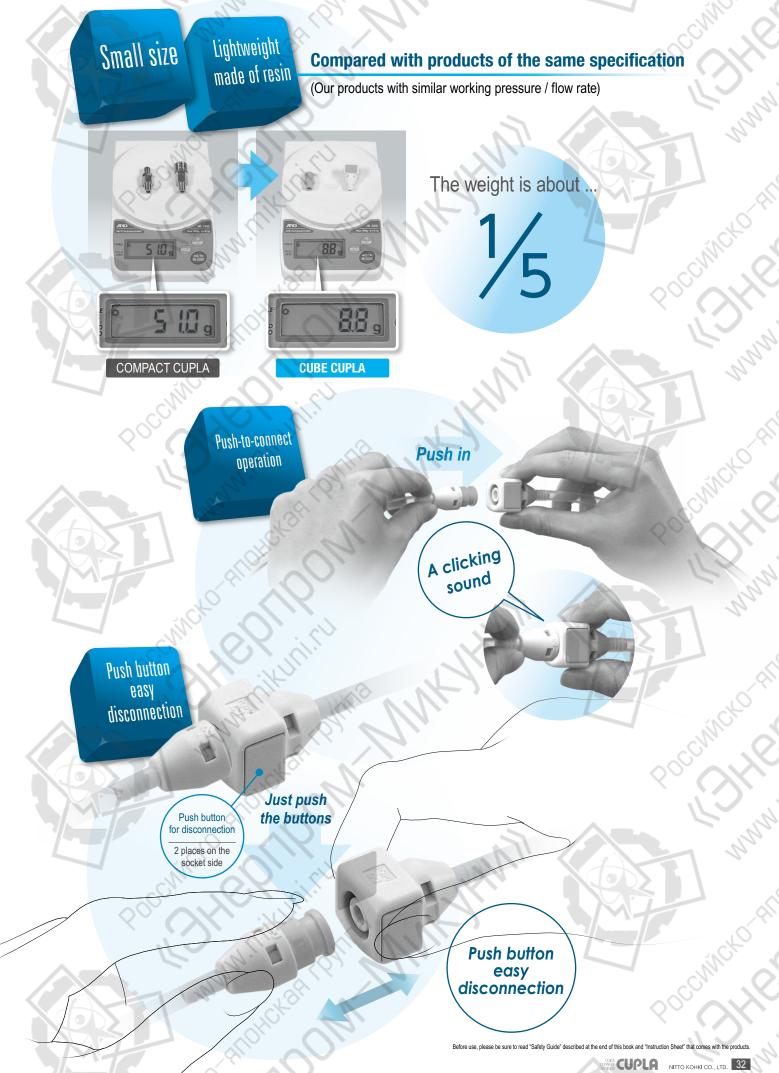


Blue

**Choose from** 

5 colors

- Resin (POM) such as the main body ... Conforms to article No.3-D-2-(2)-2 and has passed both material and elution tests specified in the Food sanitation Act and the standards For Food and Food additives (Notice No. 370 of 1959 issued by the Ministry of Health and Welfare of Japan).


O-ring (NBR) ... Conforms to article No.3-D-3-(1) and has passed both material and elution tests specified in the Food sanitation Act and the standards For Food and Food additives (Notice No. 370 of 1959 issued by the Ministry of Health and Welfare of Japan).

2

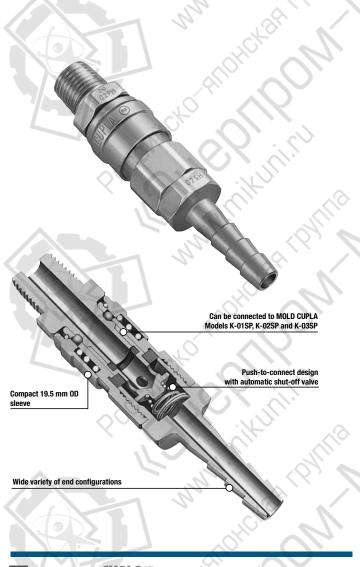
Silicone type grease (NSF H1, NSF 61 registered product) is applied to the sealing material.

- The CUPLA should be evaluated before use to determine the suitability with applications that require sanitation control.

### CUBE CUPLA



# For Low Pressure (Air)


# **SUPER CUPLA**

Light, compact for air piping connections



# The lightweight design makes the CUPLA best suited to power tools! Push-to-connect for easy operation.

- Lightweight design suits direct connection to power tools.
   Aluminum body is adopted for some models to reduce the weight.
- Just push the plug into socket for easy one hand connection.
- Available in various end configurations for a wide range of pneumatic applications.
- $\bullet$  Model 02S20P can be connected with sockets of HI CUPLA Models 10, 17, 20, 30 and 40.
- Also available with quick connect / disconnect Tube Fitter type.



Specifi	cations				115					
Body mate	erial	CUPLA : Steel (Chrome plated), Aluminum alloy (*1) Tube Fitter Part : Brass (Nickel plated) , Plastic								
	Thread		1/8	3", 1/4"	$\sim$					
Sizo	Hose barb	1/4", Urethane hose : ø5 x ø8, ø6.5 x ø10								
Size	Tube barb (Tube fitter)	Pol	yamide tube: O	side Dia. $Ø6 \pm 0.1$ , utside Dia. $Ø6^{+0.05}_{-0.08}$ Outside Dia. $Ø6 \pm 0$	, ø8 +0.05					
Pressure u	init	MPa	kgf/cm ²	bar	PSI					
Working p	ressure	1.0	10	10	145					
Seal material		Seal material	Mark	Working temperature range	Remarks					
Working to	emperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia					

Above specifications apply only to CUPLA. Maximum working pressure and working temperature range may vary depending on tube materials you use with and the working temperature. CUPLA with Tube Fitter has NBR packing material only.

(*1) Aluminum alloy is used for the body of 01SN, 02SNF, 02SC-6, 02SC-8, 02SCL-6, 02SCL-8, 02SCB-6, 02SCB-8.

Maximum Tightening To	rque	Nm {kgf•cm}
Size (Thread)	1/8"	1/4"
Torque	7 {71}	14 {143}

tening Torque Range	Nm {kgf•cm}
PN Type SN Type	

9 to 11 {92 to 112}

To mount on urethane hose, slide it over to the hose barb and tighten the nut until it is flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

#### **Flow Direction**

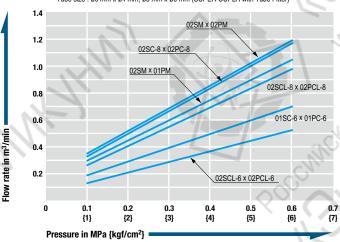
Tight

Fluid flow can be bi-directional when socket and plug are connected



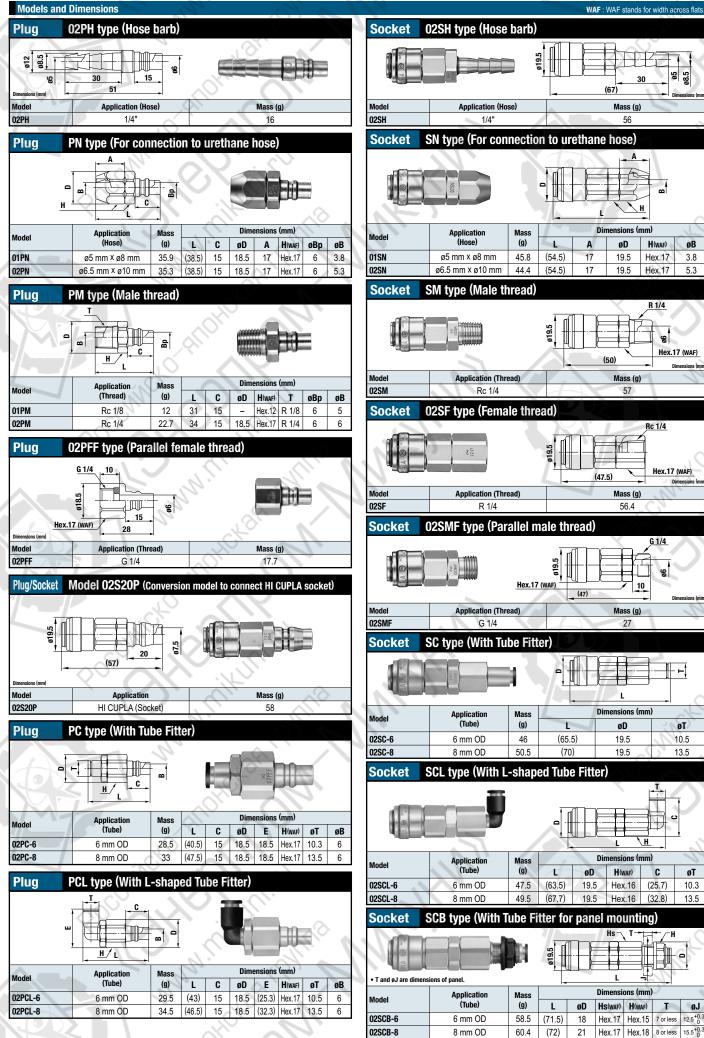
#### Interchangeability

Sockets and plugs can be connected regardless of end configurations and sizes. *Interchangeable with MOLD CUPLA. *Sockets of HI CUPLA models 10, 17, 20, 30, 40 can be connected when 02S20P is used.


Minimum Cross-Sect	ional Are	a				(mm²)
Plug Socket	01PN	02PC-6 02PCL-6	02PC-8 02PCL-8	02PH 01PM	02PN	02PM 02PFF
01SN	11.3	11.3	11.3	11.3	11.3	11.3
02SC-6/02SCL-6/02SCB-6	11.3	12.5	12.5	12.5	12.5	12.5
02SC-8/02SCL-8/02SCB-8	11.3	12.5	19	19	19	19
02SH	11.3	12.5	19	19.6	19.6	19.6
02SN	11.3	12.5	19	19.6	22	22
02SM/02SF/02SMF	11.3	12.5	19	19.6	22	28.2
02S20P	11.3	12.5	19	19.6	22	28.2

#### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.


#### Pressure - Flow Characteristics

[Test conditions] •Fluid : Air •Temperature : Room temperature •Tube size : ø6 mm x ø4 mm, ø8 mm x ø6 mm (SUPER CUPLA with Tube Fitter)



33 NITTO KOHKI CO., LTD. CUPLA DUCK





Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# **For Low Pressure**

# **HI CUPLA**

### Universal purpose couplings for air lines



# From factory air line to pneumatic tool connection, available in various body materials, sizes and end configurations. Excellent durability.

- An excellent general purpose coupling for connecting factory air supply to pneumatic tools.
- Steel coupling is suitable for air. Brass or stainless steel is suitable for water. Note that fluid will come out from the plug when disconnected.
- Critical structural parts of steel models are heat-treated for increased strength giving greater durability and resistance to wear.
- Available in various body materials, sizes and end configurations applicable to a wide range of applications.



1.1	cations									
Body mate	Body material		Steel (Chrome pla	ated)	Br	ass	Stainle	ess steel (SUS304		
Size		ad			1/8	" to 1"		57		
5120	Hose	barb		1/4" to 1" hose						
MPa		MPa	1.5		1.0		1.5			
Working p	ressure	kgf/cm ²	15		10			15		
inoritang pi	000010	bar	15		1	0		15		
		PSI	218		1	45		218		
			Seal material		Mark	Working temperature rang		Remarks		
Seal material Working temperature range		range	Nitrile rubber	N	BR (SG)	-20°C to +80°C		Standard material		
			Fluoro rubber	FKI	M (X-100)	-20°C to +180°C				

Maximum Tightening Torque Nm {kgf•cn									
Size (Thre	ead)	1/8"	1/4"	3/8"	1/2"	3/4"	1"		
$\sim 1$	Steel	7 {71}	14 {143}	22 {224}	60 {612}	100 {1020}	120 {1224}		
Torque	Brass	5 {51}	9 {92}	11 {112}	30 {306}	50 {510}	65 {663}		
1	Stainless steel	I	14 {143}	22 {224}	60 {612}	100 {1020}	120 {1224}		

#### **Flow Direction**

Fluid must run from socket to plug.

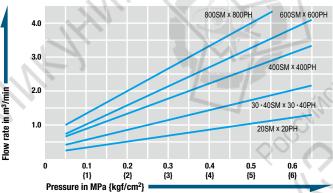


### Interchangeability

- Sockets and plugs of models 10, 17, 20, 30, and 40 can be connected with each other regardless of end configurations.
- Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

Minimum	Cross	-Secti	onal Ai	rea				4		(	mm²)
10, 17, 20,	30, 40	type								2 G	1.
Plug	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
10SM	16	20	20	20	13	20	20	20	20	20	20
17SH	16	16	16	16	13	16	16	16	16	16	16
20SH	16	20	20	20	13	20	20	20	20	20	20
20SM, SF	16	20	33	33	13	33	33	33	33	33	33
30SH	16	20	33	33	13	33	33	33	33	33	33
30SM, SF	16	20	33	33	13	33	33	33	33	33	33
40SH	16	20	33	33	13	33	33	33	33	33	33
40SM, SF	16	20	33	33	13	33	33	33	33	33	33

400, 600, 800 type


Sc	cket	400PH	600PH	800PH	400PM	600PM	800PM	400PF	600PF	800PF
4	DOSH	64	64	64	64	64	64	64	64	64
4	DOSM, SF	64	94	94	94	94	94	94	94	94
6	DOSH	64	94	94	94	94	94	94	94	94
6	DOSM, SF	64	94	94	94	94	94	94	94	94
8	DOSH	64	94	94	94	94	94	94	94	94
8	00SM, SF	64	94	94	94	94	94	94	94	94

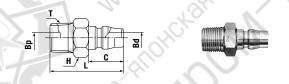
#### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.

#### **Pressure - Flow Characteristics**

[Test conditions] •Fluid : Air •Temperature : Room temperature




## **HI CUPLA**

## WAF : WAF stands for width across flats

Plug	PH	type	(Hose	e barb	)						
H H	Bp+					sug			D		
	Application	Body m	aterial	Mass (g)	2		Dim	ensions	(mm)		
Model	(Hose)	Steel	Brass	Stainless steel	L	øH	Α	C	ØŢ	øBp	øBd
17PH	1/4"	24	6	15	54	16	27	20	7.2	4.5	7.5
20PH	1/4"	28	31	27	57	16	30	20	9	5	7.5
30PH	3/8"	32	34	33	61	16	34	20	11.3	7.5	7.5
40PH	1/2" <	59	64	60	63	20	36	20	15	9	7.5
400PH	1/2"	65	71	66	66	22	36	23	15	9	13
600PH	3/4"	123	130	124	77	30	45	23	21	13	13
800PH	1"	151	161	151	85	34	54	23	27	20	13
Dlug			/	o thro	1	10			0		

#### PM type (Male thread) Plug

**Models and Dimensions** 



1.000	Model Application		Body material • Mass (g)			Dimensions (mm)				
(Thread)		Steel	Brass	Stainless steel	ΓL.	H(WAF)	C	Т	øBp	øBd
10PM	Rc 1/8	22	24	1 m	37	Hex.14	20	R 1/8	4	7.5
20PM	Rc 1/4	25	27	26	41	Hex.14	20	R 1/4	7.5	7.5
30PM	Rc 3/8	40	43	41	42	Hex.19*3	20	R 3/8	7.5	7.5
40PM	Rc 1/2	60	65	60	46	Hex.22	20	R 1/2	12	7.5
400PM	Rc 1/2	70	73	69	50	Hex.22	23	R 1/2	13	13
600PM	Rc 3/4	113	121	114	55	Hex.32	23	R 3/4	19	13
800PM	Rc 1	182	196	183	63	Hex.35	23	R1	22	13

#### PF type (Female thread) Plug

T	0	131	
H		HCT 8	
<u> </u>		$\sim$	

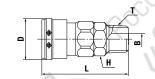
Madal	Application	Body n	Body material • Mass (g)			Dimensions (mm)					
Model	(Thread)	Steel	Brass	Stainless steel	т L	H(WAF)	C	T	øB		
20PF	R 1/4	28	31	29	36	Hex.17	20	Rc 1/4	7.5		
30PF	R 3/8	35	41	38	37	Hex.21	20	Rc 3/8	7.5		
40PF	R 1/2	69	76	70	38	Hex.29	20	Rc 1/2	7.5		
400PF	R 1/2	82	86	81	41	Hex.29	23	Rc 1/2	13		
600PF	R 3/4	115	124	115	45	Hex.35	23	Rc 3/4	13		
800PF	R 1	189	207	190	54	Hex.41	23	Rc 1 📈	13		

#### PFF type (Parallel female thread) Plug

			r A H	- - - - - - - - - - - - - - - - - - -	B		í, t	8		
	Application	Body m	naterial • I	Mass (g)	9	7	Dimensi	ions (mm)		
Model	(Thread)	Steel	Brass	Stainless steel	~L	H(WAF)	A	C	T	øB
20PFF	G 1/4	23	-	-1	32	Hex.17	9	20	G 1/4	7.5
				63				1		

#### Plug PC type (Tube Fitter)

Madal	Application	Maga (g)	21	Dimensions (mm)	
Model	Application (Tube)	Mass (g)	S-	Dimensions (mm) ØH	øB
Model 60PC		Mass (g) 25	L (37)	1	<b>øB</b> 4.5
	(Tube)	-	L (37) (41)	øH	


								A	
	Application	Body m	naterial • I	Mass (g)		Dii	mensions (r	nm)	0.
Model	(Hose)	Steel	Brass	Stainless steel	L	ØD	A	øT	øB
17SH	1/4"	99	-	-	(69.5)	(26.5)	27	7.2	4.5
20SH	1/4"	99	105	97	(72.5)	(26.5) *1	30	9	5
30SH	3/8"	102	107	100	(76.5)	(26.5) *1	34	11.3	7.5
40SH	1/2"	115	122	113	(78.5)	(26.5) *1	36	15	9
400SH	1/2"	220	235	230	(83)	35	36	15	9
600SH	3/4"	243	262	242	(92)	35	45	21	14
800SH	1"	327	350	325	(102)	35	55	27	16

## Socket SM type (Male thread)

SH type (Hose barb)



Socket



			and the second se				Alter			
	Application	Body m	aterial • I	Mass (g)	Dimensions (mm)					
Model	(Thread)	Steel	Brass	Stainless steel	Ĺ	øD	H(WAF)	Т	øB	
10SM	Rc 1/8	97	-	-	(52.5)	(26.5)	Hex.19	R 1/8	5	
20SM	Rc 1/4	97	103	96	(55.5)	(26.5) *1	Hex.19	R 1/4	7	
30SM	Rc 3/8	104	108	100	(56.5)	(26.5) *1	Hex.19	R 3/8	8 *4	
40SM	Rc 1/2	127	135	126	(59.5)	(26.5) *1	Hex.23 *2	R 1/2	9	
400SM	Rc 1/2	210	224	212	(63)	35	Hex.29	R 1/2	13	
600SM	Rc 3/4	242	259	243	(67)	35	Hex.32	R 3/4	16	
800SM	Rc 1	329	353	328	(72)	35	Hex.36	R 1	16	

## **Socket** SF type (Female thread)

						H		Ì
	Application	Body m	naterial • I	Mass (g)		Dimensi	ons (mm)	2
Model	(Thread)	Steel	Brass	Stainless steel	<b>L</b> .	øD	H(WAF)	- TV
20SF	R 1/4	97	101	94	(49.5)	(26.5) *1	Hex.19	Rc 1/4
30SF	R 3/8	98	103	95	(50.5)	(26.5) *1	Hex.21	Rc 3/8
40SF	R 1/2	136	146	138	(52.5)	(26.5) *1	Hex.29	Rc 1/2
400SF	R 1/2	216	233	215	(57)	35	Hex.29	Rc 1/2
600SF	R 3/4	259	277	257	(61)	35	Hex.35	Rc 3/4
800SF	R1	327	361	327	(68)	35	Hex.41	Rc 1

Above pictures are plugs and sockets of steel 20, 30 and 40 models.
*1 D = 25.4 for brass and stainless steel models.
*2 : H = Hex. 22 for brass and stainless steel models.
*3 : H = Hex. 17 for brass and stainless steel models.

*4 : B = 9 for brass and stainless steel models.

**Application Example Pneumatic tools** 

All of socket, plug and tube can be connected in one push-to-connect operation. Just push the tube into CUPLA and then it is locked. PC type (Tube Fitter) Polyurethane, Nylon and Fluorine contained resin tube

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produ

## **For Low Pressure**

# **HI CUPLA BL**

Universal purpose couplings with sleeve lock mechanism for air lines



## Sleeve-lock mechanism is engaged by rotating the sleeve after connection.

- · Sleeve-lock mechanism prevents accidental disconnection.
- An excellent general purpose coupling for connecting factory air supply to pneumatic tools.
- Steel coupling is suitable for air. Stainless steel is suitable for water. Note that fluid will come out from the plug when disconnected.
- · Critical structural parts made of steel are heat-treated for increased strength giving greater durability and resistance to wear.
- Various body materials, sizes, and end configurations are available.
- · SN-BL type for connection to urethane hose requires no hose clamp.



Speci	ifications				115			
Body ma	aterial	Steel (Chro	Steel (Chrome plated) Stainless steel (SUS304)					
	Thread and hose barb		1/4", 3/8", 1/2"					
Size	SN Type for urethane bose		o10 mm hose 12 mm hose	<u> </u>				
	for arctitatic fiese	For ø8.5 x ø	12.5 mm hose					
Pressure	e unit	MPa	kgf/cm ²	bar	PSI			
Working pressure Seal material Working temperature range		1.5	15	15	218			
		Seal material	Mark	Working temperature range	Remarks			
		Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia			

Note: Working temperature range of SN-BL type is -20°C to +60°C

Maxin	num Tighter	Nm {kgf•cm}		
Size (Thr	ead)	1/4"	3/8"	1/2"
Tangua	Steel	14 {143}	22 {224}	60 {612}
Torque	Stainless steel	14 {143}	22 {224}	60 {612}

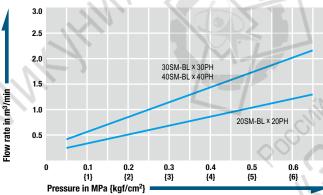
Tightening Torque Range	Nm {kgf•cm}
SN Type for urethane hose	
9 to 11 {92 to 112}	$\sim \sim \sim$
To mount on urethane hose, slide it over to the hose barb and tighten the nut until	it is flush against the hose barb base.

It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightenin



## Interchangeability

- Sockets and plugs of models 10, 17, 20, 30, and 40 can be connected with each other regardless of end configurations.
- Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

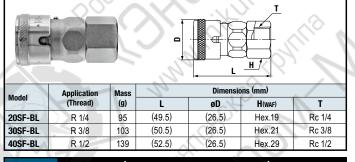

Minimum	Cross	-Secti	onal Ai	rea						1	mm²)
Plug	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
20SH-BL	16	20	20	20	13	20	20	20	20	20	20
20SM-BL	16	20	33	33	13	33	33	33	33	33	33
20SF-BL	16	20	33	33	13	33	33	33	33	33	33
30SH-BL	16	20	33	33	13	33	33	33	33	33	33
30SM-BL	16	20	33	33	13	33	33	33	33	33	33
30SF-BL	16	20	33	33	13	33	33	33	33	33	33
40SH-BL	16	20	33	33	13	33	33	- 33	33	33	33
40SM-BL	16	20	33	33	13	33	33	33	33	33	33
40SF-BL	16	20	33	33	13	33	33	33	33	33	33
65SN-BL	16	20	22	22	13	22	22	22	22	22	22
80SN-BL	16	20	33	33	13	33	33	33	33	33	33
85SN-BL	16	20	33	33	13	33	33	33	33	33	33

### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

### Pressure - Flow Characteristics

[Test conditions] •Fluid : Air Temperature : Room temperature




Socket	SH-BL ty	pe (Ho	se barb)		10		
R. C	-65		-			Ħ	
	Application	Mass	et ó		L nensions (n	A 1m)	
Model	Application (Hose)	Mass (g)	ckó		L nensions (n		→ → ØB
Model 20SH-BL			L (72.5)			1m)	→ ' →
	(Hose)	(g)	L (72.5) (76.5)	v ↓ ØD	A	• 1m) ØT	øB

## Socket SM-BL type (Male thread)

	CH		1		184		
Madal	Application	Mass		N P	imensions (m	m)	
Model	Application (Thread)	Mass (g)	L	ØD	imensions (m H(WAF)	m) T	øB
Model 20SM-BL			L (55.5)			m) T R 1/4	<b>øB</b> 7
	(Thread)	(g)	L (55.5) (56.5)	øD	H(WAF)	Т	

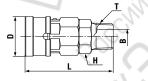
## Socket SF-BL type (Female thread)



## **Socket** SN-BL type (For urethane hose connection)

					ľ		0
Model	Application	Mass		Dir	nensions (m	m)	10 a
WOUEI	(Hose)	(g)	L	øD	øB	H(WAF)	T(WAF)
65SN-BL	ø6.5 x ø10	115	(59.5)	(26.5)	5.3	Hex.19	Hex.17
80SN-BL	ø8 x ø12	120	(61.5)	(26.5)	7.5	Hex.19	Hex.19
85SN-BL	ø8.5 x ø12.5	120	(61.5)	(26.5)	7.5	Hex.19	Hex.19

Above pictures are sockets of 30 and 80 models.



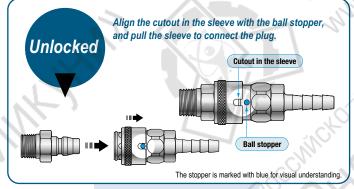

SOCKET	SH-BL Ty	ре (по	ise Dard)		- 0	s, esp	
-B			-				
Madal	Application	Mass		Di	mensions (m	nm)	- 7
Model	(Hose)	(g)	L	øD	A	ØT	øB
20SH-BL	1/4"	100	(72.5)	25.4	30	9	5
30SH-BL	3/8"	101	(76.5)	25.4	34	11.3	7.5
							1.0

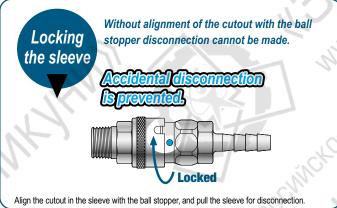
Stainless steel

## Socket SM-BL type (Male thread)






	Application	Mass		D	)imensions (mr	m)	
Model	(Thread)	(g)	L	øD	H(WAF)	Т	øB
20SM-BL	Rc 1/4	96	(55.5)	25.4	Hex.19	R 1/4	7
30SM-BL	Rc 3/8	105	(56.5)	25.4	Hex.19	R 3/8	9
40SM-BL	Rc 1/2	120	(59.5)	25.4	Hex.22	R 1/2	9


## Socket SF-BL type (Female thread)



<b>-</b>		-N
	Dimensions (mm)	5

Model	Application	Mass		Dimensi	ons (mm)	· · · · · ·
woder	(Thread)	(g)	L	øD	H(WAF)	Т
20SF-BL	R 1/4	98	(49.5)	25.4	Hex.19	Rc 1/4
30SF-BL	R 3/8	99	(50.5)	25.4	Hex.21	Rc 3/8
40SF-BL	R 1/2	138	(52.5)	25.4	Hex.29	Rc 1/2





Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# HI CUPLA 200

## Push-to-connect type for air lines



## Simple and secure push-to-connect type! Big flow rate! End-face seal design. Gives excellent handling touch.

- Just push the plug into the socket for simple and secure connection. This reduces connection time and improves efficiency.
- New valve design for low pressure loss to achieve flow rate increase (15% up over the conventional model).
- End-face seal is achieved when connected.
- Enhanced operability with low connection resistance.
- End-face seal design is superior to external seal with an O-ring due to no seal damage caused by exhausted lubrication.
- Available only with steel body. Not suitable for water or oil.
- Also available with quick connect/disconnect Tube Fitter type.



Specifi	ications				115
Body mate	erial		Steel (Ch	rome plated)	all'
	Thread and hose barb		1/4", 3	3/8", 1/2"	5
Size	Tube barb (Tube fitter)	Polyam	ide tube: Outer o		0 ⁵ , ø10 ^{+0.05}
Pressure	unit	MPa	kgf/cm ²	bar	PSI
Working p	ressure	1.5	15	15	218
Seal mate	rial	Seal material	Mark	Working temperature range	Remarks
Working t	emperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia

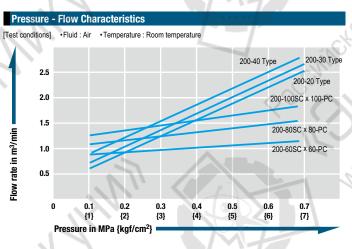
Above specifications apply only to CUPLA. Maximum working pressure and working temperature range may vary depending on materials of the tube and the working temperature.

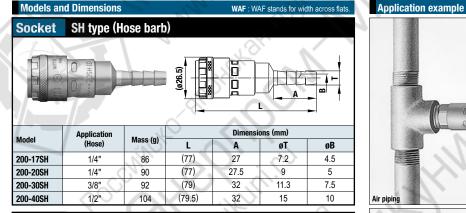
Maximum Tightening To	orque		Nm {kgf•cm}
Size (Thread)	1/4"	3/8"	1/2"
Torque	14 {143}	22 {224}	60 {612}

### Flow Direction

Fluid must run from socket to plug.




### Interchangeability


Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800). Please see page 19 for "HI CUPLA Series Interchangeability".

Minimum	Cross	-Secti	onal Ai	rea			A		17	(	mm²)
Socket	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
200-17SH	16	16	16	16	13	16	16	16	16	16	16
200-20SH	16	20	20	20	13	20	20	20	20	20	20
200-30SH	16	20	41	41	13	41	41	41	41	41	41
200-40SH	16	20	41	41	13	41	41	41	41	41	41
200-20SM	16	20	41	41	13	41	41	41	41	41	41
200-30SM	16	20	41	41	13	41	41	41	41	41	41
200-40SM	16	20	41	41	13	41	41	41	41	41	41
200-20SF	16	20	41	41	13	41	41	41	41	41	41
200-30SF	16	20	41	41	13	41	41	41	41	41	41
200-40SF	16	20	41	41	13	41	41	41	41	41	41
		20									

### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.





#### SM type (Male thread) Socket

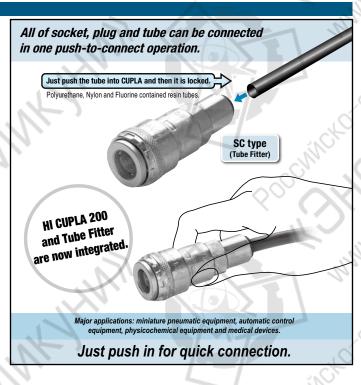
			(026.5)		H	
		1		~~~		1 × 1
	Application		~	Dimensio	ons (mm)	7.
Model	Application (Thread)	Mass (g)		Dimensio H(war)	ns (mm) T	øB
Model 200-20SM		Mass (g) - 89	L (60)			Ø <b>B</b> 7.5
	(Thread)		L (60) (60.5)	H(WAF)	T	

## Socket SF type (Female thread)

		Ø	(626.5)		ALLIO C		
Models	Application (Thread)	Mass (g)	Dimensions (mm)				
	(	10	L	H(WAF)	T		
	D. 1/1		(57.5)		D- 4/4		
200-20SF	R 1/4	94	(57.5)	Hex.19	Rc 1/4		
200-20SF 200-30SF	R 1/4 R 3/8	94 103	(57.5) (55.5)	Hex.19 Hex.22	Rc 1/4 Rc 3/8		

## Models and Dimensions (With Tube Fitter)

Socket	SC type (Tr	ibe Fitte		
Model	Application (Tube)	Mass (g)		L ions (mm)
200-60SC	For 6 mm OD tube	100	(64)	ØB 5
		100		
200-80SC	For 8 mm OD tube	105	(67.5)	6.5


CONNOLO

www.mikuninu www.mikuninu www.mikuninu

Air piping

HI CUPLA 200





CUPLA NITTO KOHKI CO., LTD. 40

**HI CUPLA for Connection to Braided Hoses NUT CUPLA NUT CUPLA 200 ROTARY NUT CUPLA** For connection to urethane hose, braided hose



## No hose clamp required! Fitted with hose guard nut to prevent possible kinking. **HI CUPLA for connection to braided** hoses is now available.

- Nut types are available in HI CUPLA Series and HI CUPLA 200 Series. Hose guard nut type available to prevent hose kinking.
- To mount on hose, simply slide it over the nipple and tighten the nut.
- The design to tighten outside of hose reduces hose slip away or fluid leaks.
- Also available are ROTARY NUT CUPLA equipped with ball bearing swivel mechanism to prevent and relieve tension on operator's hands.



Body material			Steel (Chr	ome plated)	ch'		
Urethane hose size		For ø6	.5 mm × ø10 mm	ø6 mm x ø9 mm l , ø8 mm × ø12 mr n, ø11 mm × ø16 n	n hose		
Pressure unit		MPa	kgf/cm ²	bar	PSI		
Working pressure		1.5	15	15 218			
Seal material Working temperature range		Seal material	Mark	Working temperature range	Remarks		
		Nitrile rubber	NBR (SG)				
Specifications (	HI CUPL	A for Connecti	ion to Braided	Hoses)			
Body material		Steel (Chrome plated) Brass					
Braided hose size	2	*	For ø9 mm x	v ø15 mm hose			
	MPa	1	.5	1.0			
Working pressure	kgf/cm ²	1	5	1	0		
Homany procouro	bar	1	5	1	0		
NN	PSI	21	18	14	45		
Seal material							
Seal material		Seal material	Mark	Working temperature range	Remarks		

Specifications (NUT CUPLA / NUT CUPLA 200 / ROTARY NUT CUPLA)

Maximum working pressure and temperature range of PN/SN type for braided hoses depends upon the specification of the braided hose to be used.

Tightening Torque Range Nm {kgf · cm]							
Model	SN, PN, SNR Type	65SNG, PNG, SNRG Type	85SNG, PNG, SNRG Type				
Torque	9 to 11 {92 to 112}	5 to 6 {51 to 61}	7 to 8 {71 to 82}				

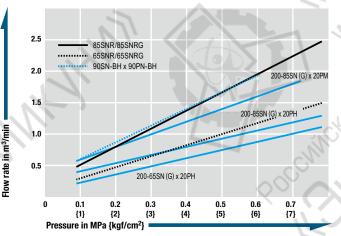
To mount on braided hose or urethane hose, slide it over to the hose barb and tighten the nut until it flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

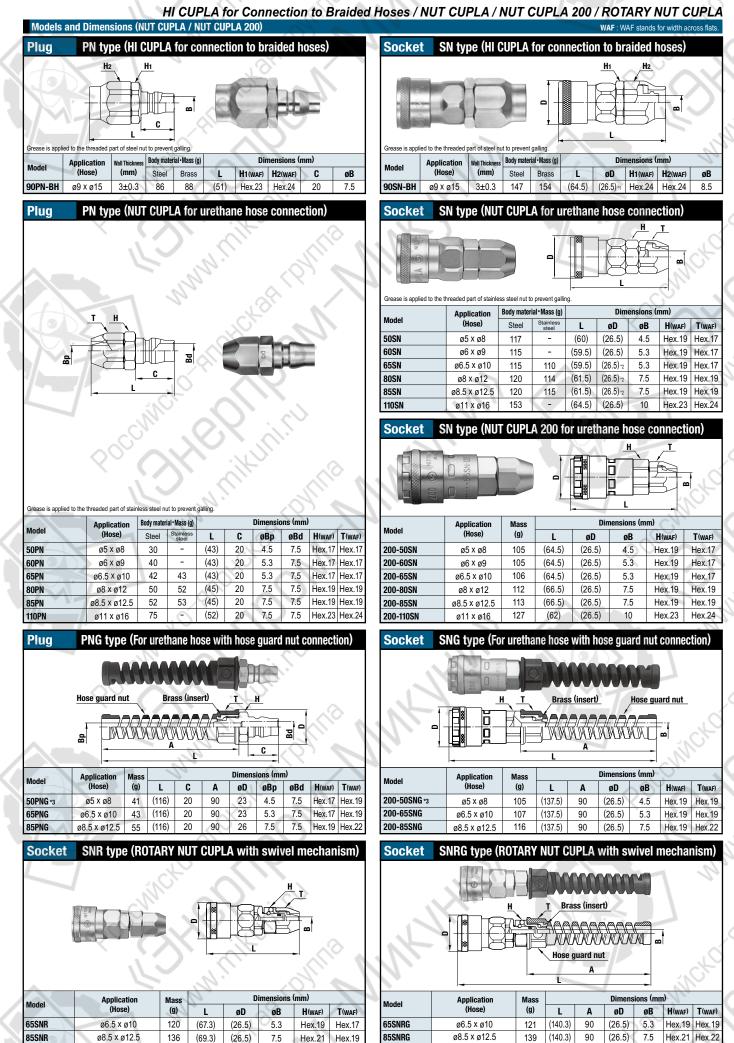
## Flow Direction

Fluid must run from socket to plug.

### Interchangeability

Interchangeable with HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800) Please see page 19 for "HI CUPLA Series Interchangeability".


Minimun	n Cros	s-Sec	tional	Area							1 (	nm²)
Plug Socket	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF	90PN-BH
200-50SN	16	16	16	16	13	16	16	16	16	16	16	16
200-60SN	16	20	22	22	13	22	22	22	22	22	22	22
200-65SN	16	20	22	22	13	22	22	22	22	22	22	22
200-80SN	16	20	41	41	13	41	41	41	41	41	41	41
200-85SN	16	20	41	41	13	41	41	41	41	41	41	41
200-110SN	16	20	41	41	13	41	41	41	41	41	41	41
200-50SNG	16	16	16	16	13	16	16	16	16	16	16	16
200-65SNG	16	20	22	22	13	22	22	22	22	22	22	22
200-85SNG	16	20	40	41	13	41	41	41	41	41	41	41
90SN-BH	16	20	33	33	13	33	33	33	33	33	33	33


## Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

### Pressure - Flow Characteristics

[Test conditions] •Fluid : Air Temperature : Room temperature





The pictures of HI CUPLA for connection to braided hoses and PN type and SN type of NUT CUPLA show steel bodies.

*1: Brass: øD=25.4 *2: Stainless steel: øD=25.4 *3: Made-to-order item Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produ

# **LOCK CUPLA 200**

Air line coupling with sleeve safety lock feature



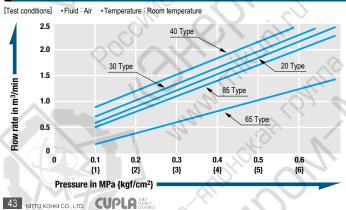
## Push-to-connect operation. Added easy lock design for safety!



- Locking mechanism prevents accidental disconnection after connection. Good for connections between hoses.
- Simple one push of plug and socket to each other for connection. Easy handling improves job efficiency.
- Ball bearing swivel mechanism prevents hose twists and relieves load on holding hands (SNRG type).
- To mount on hose, simply slide it over the nipple and tighten the nut (SNRG type).
- Hose guard nut to prevent hose from kinking as a standard feature (SNRG type).
- Low pressure loss valve design gives improved flow rate.

## Application Example

Applicable fluid Air Application


Pneumatic tools, Pneumatic devices, Various air piping

### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

Minimum C	ross-s	ectior	al Are	a					1	(	mm²)
Plug LOCK CUPLA 200	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
L200-20SH	16	20	20	20	13	20	20	20	20	20	20
L200-30SH	16	20	41	41	13	41	41	41	41	41	41
L200-40SH	16	20	41	41	13	41	41	41	41	41	41
L200-20SM	16	20	41	41	13	41	41	41	41	41	41
L200-30SM	16	20	41	41	13	41	41	41	41	41	41
L200-40SM	16	20	41	41	13	41	41	41	41	41	41
L200-20SF	16	20	41	41	13	41	41	41	41	41	41
L200-30SF	16	20	41	41	13	41	41	41	41	41	41
L200-40SF	16	20	41	41	13	41	41	41	41	41	41
L200-65SNRG	16	20	20	20	13	20	20	20	20	20	20
L200-85SNRG	16	38	38	38	13	38	38	38	38	38	38

## Pressure - Flow Characteristics



Speci	fications				15
Body ma	terial	Steel (Chrome plated)			
Size	Thread and hose barb		1/4", 3	/8", 1/2"	5
0126	SNRG type	For ø6.5	mm x ø10mm, ø	ø8.5 mm x ø12.5 n	nm hose
Pressure	unit	MPa	kgf/cm ²	bar	PSI
Working	pressure	1.5	15	15 218	
Seal material Working temperature range		Seal material	Mark	Working temperature range	Remarks
		Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia

Maximum Tightening Torque, Tightening Torque Range Nm {kgf•cm]								
Type of connection		Thread		Hose guard nut				
Applicable size 🚿	1/4"	3/8"	1/2"	ø6.5 mm x ø10mm	ø8.5 mm x ø12.5mm			
Torque	14 {143}	22 {224}	60 {612}	5 to 6 {51 to 61}	7 to 8 {71 to 82}			
To mount on urethane ho	sa slida it over t	o the hose harb	and tighten the	nut until it is flush agains	t the hose harh hase			

To mount on urethane hose, slide it over to the hose barb and tighten the nut until it is flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

## Flow Direction

### Fluid must run from socket to plug.



## Interchangeability

Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

moucis ai	d Dimensions					
Socket	SH type (Hose bart	)				
			(27.4)			
Madal	Application (Hose)	Mass		Dimens	ions (mm)	
Model	Application (Hose)	Mass (g)		Dimens	ions (mm)	ØB
Model L200-20SH	Application (Hose)		L (77)			ØB 5
		(g)	L (77) (79)	A	ØT	- · ·
L200-20SH	1/4"	<b>(g)</b> 90		<b>A</b> 27.5	<b>ØT</b> 9	5

## **Socket** SM type (Male thread)

			(27.4)		H	
	Angelia ation (Thursd)	Mass	2 9	Dimensio	ons (mm)	
Model	Application (Thread)	(g)	L	H(WAF)	Т	øB
L200-20SM	Rc 1/4	89	(60)	Hex.19	R 1/4	7.5
L200-30SM	Rc 3/8	91	(60.5)	Hex.19	R 3/8	10
L200-40SM	Rc 1/2	102	(56)	Hex.24	R 1/2	13

Ţ

## Socket SF type (Female thread)

	11/200		(27.4)		SCN.		
Madal	Application (Thread)	Mass	Dimensions (mm)				
Model		(g)	L	H(WAF)	I I		
L200-20SF	R 1/4	94	(57.5)	Hex.19	Rc 1/4		
L200-30SF	R 3/8	103	(55.5)	Hex.22	Rc 3/8		
L200-40SF	R 1/2	138	(57.5)	Hex.29	Rc 1/2		

## **Socket** SNRG type (For hose with hose guard nut connection)

1 M			rass (insert)				in o
Model	Application (Hose)	Mass		Dii	mensions (	mm)	) 1
Wouer	Application (nose)	(g)	L	Α	H(WAF)	T(WAF)	øB
L200-65SNRG	ø6.5 mm × ø10 mm	125	(147.8)	(90)	Hex.19	Hex.19	5.3
L200-85SNRG	ø8.5 mm × ø12.5 mm	132	(146.8)	(90)	Hex.21	Hex.22	7.5

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products



## Air flows in either direction from plug or from socket side when coupled. Ideal for connection of factory air supply lines to pneumatic devices.

- Can be connected with plugs for HI CUPLA Models 10, 17, 20, 30 and 40 and allows fluid to flow from either plug or socket side when coupled.
- Wide range of connections such as from ports on air pipes in factory to individual pneumatic devices.
- Critical structural parts are heat-treated for increased strength giving greater durability and resistance to wear.
- Available in various sizes and end configurations to suit a wide range of applications.



Pressure - Flow Characteristics [Test conditions] •Fluid : Air •Temperature : Room temperature 2.0 40 type 30 type 1.5 Flow rate in m³/min 1.0 0.5 0.3 0.5 0.6 0 0.4 0.1 0.2 {1} {2} {3} {4} {5} **{6**} Pressure in MPa {kgf/cm²}

Body ma	aterial		Steel (Ch	rome plated)	Na				
Size	Thread		1/4", 3/8", 1/2"						
3120	Hose barb	For ø6.5	5 mm x ø10 mm,	ø8.5 mm x ø12.5	mm hose				
Pressure	e unit	MPa	MPa kgf/cm ²		PSI				
Working pressure		1.5	15	15	218				
Coolma	havial	Seal material	Mark	Working temperature range	Remarks				
Seal mat Working	ternan temperature range 🐚	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia				
		Fluoro rubber	FKM (X-100)	-20°C to +180°C	Made-to-order iten				
	1.	I			1 2				
Maxir	mum Tightening T	orque			Nm {kgf•cm}				
Size (Th	read)	1/4"		3/8"	1/2"				

## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.

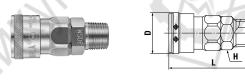


### Interchangeability

Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.


WAF : WAF stands for width across fla

### Models and Dimensions

## Socket SH type (Hose barb)

(字) <b>(</b> ) ()	d					A	<u><u>B</u></u>
Madal	Application	Mass		D	imensions (m	m)	5
Model	(Hose)	(g)	L	øD	Α	ØT	øB
TW20SH	1/4"	98	(72.5)	(26.5)	30	9	5
TW30SH	3/8"	102	(76.5)	(26.5)	34	11.3	7.5
TW40SH	1/2"	117	(78.5)	(26.5)	36	15	9

## Socket SM type (Male thread)



ľ		Application	Mass	Dimensions (mm)					
	Model	(Thread)	(g)	L	øD	H(WAF)	stor i	øB	
	TW20SM	Rc 1/4	95	(55.5)	(26.5)	Hex.19 <	R 1/4	7	
	TW30SM	Rc 3/8	109	(56.5)	(26.5)	Hex.19	R 3/8	8	
	TW40SM	Rc 1/2	116	(59.5)	(26.5)	Hex.23	R 1/2	9	

## Socket SF type (Female thread)

Nite C 10			]		T H	3
Model	Application	Mass		Dimensi	ions (mm)	
Woder	(Thread)	(g)	L	øD	H(WAF)	I
TW20SF	R 1/4	95	(49.5)	(26.5)	Hex.19	Rc 1/4
TW30SF	R 3/8	96	(50.5)	(26.5)	Hex.21	Rc 3/8
TW40SF	R 1/2	137	(52.5)	(26.5)	Hex.29	Rc 1/2

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produc

# **FULL-BLOW CUPLA**

Air line coupling with low pressure loss and high flow rate



## Unique full-open gate type valve mechanism realizes low pressure loss and high flow rate, which reduces required source air volume.

- The flow rate is increased by up to 40% more than that of conventional CUPLA.
- During connection and disconnection, the valve is closed, enabling connection/disconnection under zero line pressure.
- When the sleeve of socket is returned to its original position, the purge mechanism releases the residual air pressure in the plug, eliminating unpleasant popping noise and hose whip motion on disconnection.
- Built-in sleeve lock mechanism prevents accidental disconnection of CUPLA, ensuring safe operation.
- The valve can be opened and closed while the socket and plug are connected.

The weight is reduced by 30 to 45% compared with that of conventional CUPLA.
 Note: Direct mounting of FULL-BLOW CUPLA to percussive and vibrating tools should be avoided.



Sher	ifications								
Body material			Aluminum alloy						
-	Thread and hose barb		1/4", 3	3/8", 1/2"	5				
Size	SN type for urethane hose	For ø6.5 mm × ø10 mm, ø8 mm × ø12 mm polyurethane hose For ø8.5 mm × ø12.5 mm, ø11 mm × ø16 mm polyurethane hose							
Pressur	re unit	MPa	kgf/cm ²	bar	PSI				
Working	g pressure	1.5	15	15	218				
Seal material Working temperature range		Seal material	Mark	Working temperature range	Remarks				
		Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia				

<b>Maximum Tightening To</b>	Nm {kgf•cm}		
Size (Thread)	1/4"	3/8"	1/2"
Torque	14 {143}	22 {224}	60 {612}

Tightening Torque Range

Nm {kgf•cm}

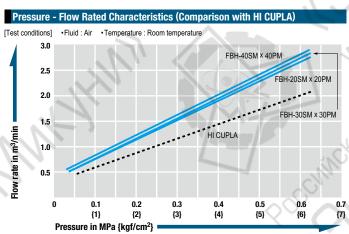
SN Type for urethane hose 9 to 11 {92 to 112}

To mount on urethane hose, slide it over to the hose barb and tighten the nut until it is flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

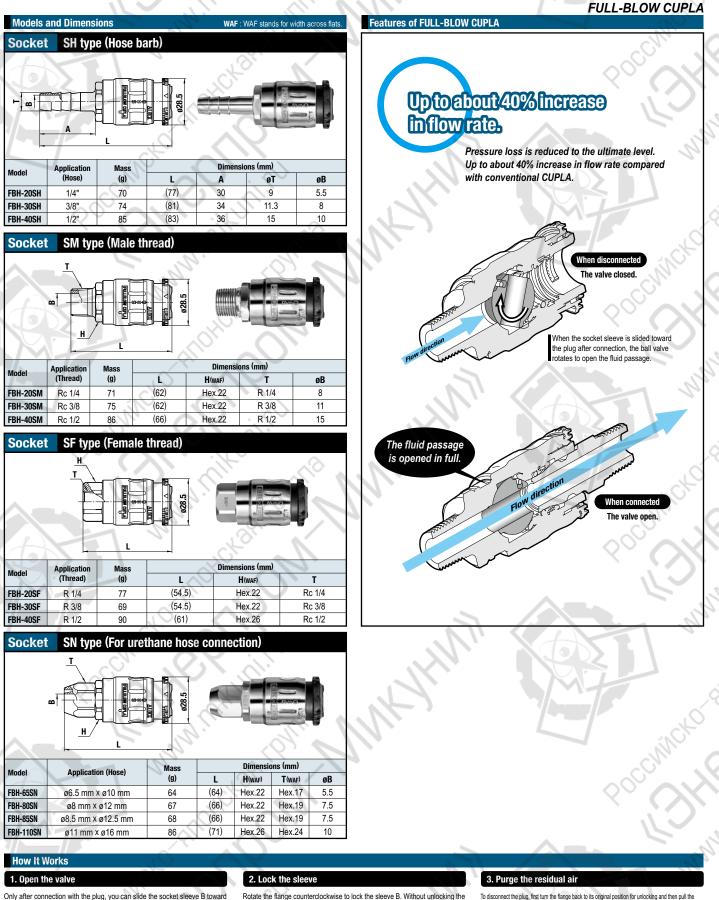
### Flow Direction

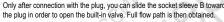
Fluid must run from socket to plug.

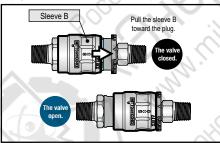



## Interchangeability

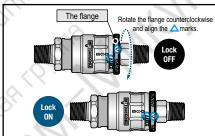
Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Not interchangeable with some plugs of plastic HI CUPLA 250 (discontinued product) Please see page 19 for "HI CUPLA Series Interchangeability".


Minimum	Cross	-Sectio	onal Ar	ea					$\Diamond$	) (	mm²)
Plug	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
FBH-20SH	16	20	24	24	13	24	24	24	24	24	24
FBH-30SH	16	20	44	44	13	44	44	44	44	44	44
FBH-40SH	16	20	44	44	13	44	44	44	44	44	44
FBH-20SM	16	20	44	44	13	44	44	44	44	44	44
FBH-30SM	16	20	44	44	13	44	44	44	44	44	44
FBH-40SM	16	20	44	44	13	44	44	44	44	44	44
FBH-20SF	16	20	44	44	13	44	44	44	44	44	44
FBH-30SF	16	20	44	44	13	44	44	44	44	44	44
FBH-40SF	16	20	44	44	13	44	44	44	44	44	44
FBH-65SN	16	20	24	24	13	24	24	24	24	24	24
FBH-80SN	16	20	44	44	13	44	44	44	44	44	44
FBH-85SN	16	20	44	44	13	44	44	44	44	44	44
FBH-110SN	16	20	44	44	13	44	44	44	44	44	44

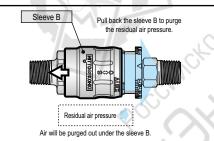

## Suitability for Vacuum


Not suitable for vacuum application in either connected or disconnected condition.




45 NITTO KOHKI CO., LTD. CUPLA DUK







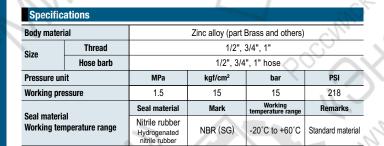

plug you cannot disconnect.



To disconnect the plug, first turn the flange back to its original position for unlocking and then pull the sleeve B back to the original position. The built-in valve will be closed to purge the residual air pressure



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product


# **PURGE HI CUPLA PVR** Type

Air line coupling with built-in residual air pressure release function



## **Connection can be made smoothly** regardless of the existing pressure inside the socket.

- Push-to-connect operation. Easy one-hand operation.
- · Built-in sleeve lock mechanism prevents accidental disconnection of CUPLA, ensuring safe operation.
- . Upon completion of sleeve locking the valve will open to supply air.
- . When the sleeve is turned back to its original position, the valve is closed and purges residual air pressure in the plug without unpleasant popping noise and hose whip motion on disconnection.
- · Even after connection, valve opening/closing control is possible.
- Flow rate increases by approximately 20% over that of HI CUPLA Model 400SM.
- Can be connected with plugs for HI CUPLA Models 400, 600 and 800.



Maximum Tightening To	Clobs	Nm {kgf•cm}	
Size (Thread)	1/2"	3/4"	1"
Torque	30 {306}	50 {510}	65 {663}

**Flow Direction** 

Fluid must run from socket to plug.











Interchangeabilit

Can be connected with plugs of HI CUPLA models 400, 600 and 800. Please see page 19 for "HI CUPLA Series Interchangeability".

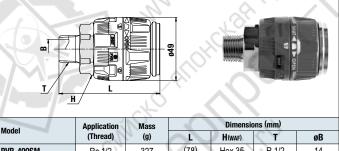
Minimum	Cross-S	ectiona	l Area	1		$\sim$		1	(mm²)	
Model	400PH	600PH	800PH	400PM	600PM	800PM	400PF	600PF	800PF	
PVR-400SH	64	71	71	71	71	71	71	71	71	
PVR-600SH	64	116	116	116	116	116	116	116	116	
PVR-800SH	64	116	116	116	116	116	116	116	116	
PVR-400SM	64	116	116	116	116	116	116	116	116	
PVR-600SM	64	116	116	116	116	116	116	116	116	
PVR-800SM	64	116	116	116	116	116	116	116	116	
PVR-400SF	64	116	116	116	116	116	116	116	116	
PVR-600SF	64	116	116	116	116	116	116	116	116	
PVR-800SF	64	116	116	116	116	116	116	116	116	

### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

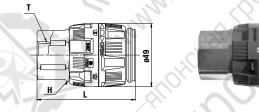
#### **Pressure - Flow Rated Characteristi** •Fluid : Air [Test conditions] Temperature : Room temperature 6.0 5.0 PVR-800SM × 800PH 4.0 PVR-600SM × 600PH 3.0 ^{-low} rate in m³/min PVR-400SM × 400PH 2.0 1.0 0.2 0.3 0.4 0.5 0.6 {6} n 0.1 {3} {1} {2} {4} {5} Pressure in MPa {kgf/cm²}




## PURGE HI CUPLA PVR Type

 Models and Dimensions
 WAF : WAF stands for width across flats.

 Socket
 SH type (Hose barb)


			649		and a point	
Madal	Application	Mass	OX	Dimensio	ns (mm)	
Model	(Hose)	(g)		A	øT	øB
PVR-400SH	1/2"	380	(105)	36	15	9.5
PVR-600SH	3/4"	361	(109)	45	21	14
PVR-800SH	1"	440	(118)	55	27	16

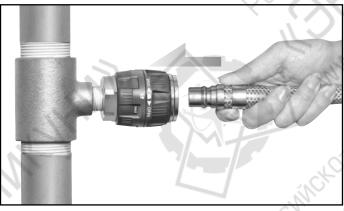
## Socket SM type (Male thread)



Mouel	(Thread)	(g)		H(WAF)	C Y	øB
PVR-400SM	Rc 1/2	327	(78)	Hex.35	R 1/2	14
PVR-600SM	Rc 3/4	345	(82)	Hex.35	R 3/4	18
PVR-800SM	Rc 1	374	(84)	Hex.35	R 1	24
	-		~		1	NO-

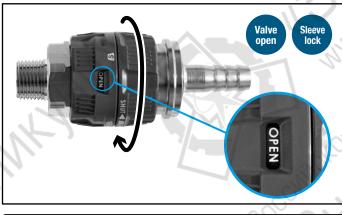
## Socket SF type (Female thread)




Model	Application	Mass (g)	Dimensions (mm)				
wouer	(Thread)			H(WAF)	Т		
PVR-400SF	R 1/2	394	(76)	Hex.35	Rc 1/2		
PVR-600SF	R 3/4	370	(77)	Hex.35	Rc 3/4		
PVR-800SF	R1	440	(82)	Hex.41	Rc 1		

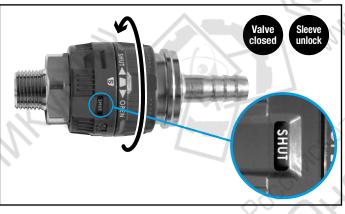


## Function of PURGE HI CUPLA PVR Type


1. Connection

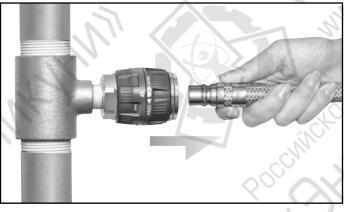
Valve opening/closing operation and plug connection to socket can be made independently. Push-to- connect operation is achieved regardless of existing pressure inside the pipe.




## 2. Open the valve and lock the sleeve.

Turning the operation ring will open the valve in the socket to supply air and lock the sleeve to prevent accidental disconnection.




## 3. Close the valve and unlock the sleeve

Turning the operation ring back to its original position will close the valve and stop air flow, release the residual air pressure in the plug, and unlock the sleeve.



## 4. Disconnection

Disconnection can be made without unpleasant popping noise and hose whip motion due to no residual air pressure inside the plug.

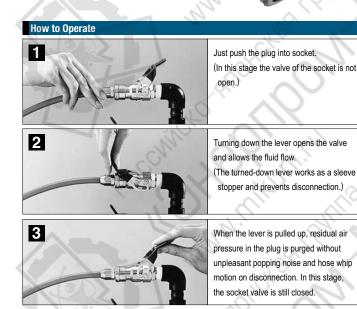


Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

# **PURGE HI CUPLA**

Air line coupling with residual pressure release function




## Push-to-connect operation even with existing internal pressure! Eliminates unpleasant popping noise and hose whip motion on disconnection.

- Just push in the plug for connection regardless of internal pressure in socket.
- Even after connection, lever operation gives perfect control over valve opening/closing.
- In disconnection, lever action releases residual air pressure in the plug without unpleasant popping noise and hose whip motion.
- · Safe design prevents leveroperated valve from opening when plug is not connected.

Can be connected to correspondi HI CUPLA plugs

Push-to-connect design

Lever action opens / closes the valve in the CUPLA



Specifications				115
Body material		Brass (Chr	ome plated)	CV.
Size (Thread)		1/4", 3/8"	, 1/2", 3/4"	SY.
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.0	10	10	145
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia

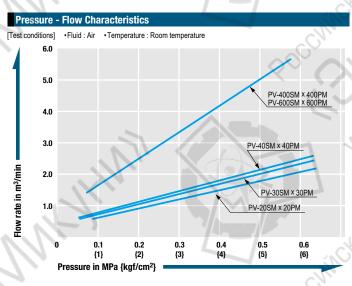
Maximum Tightening To		Nm	{kgf•cm}		
Model	PV-20SM	PV-30SM	PV-40SM	PV-400SM	PV-600SM
Torque	9 {92}	11 {112}	30 {306}	30 {306}	50 {510}

### **Flow Direction**





## Interchangeability


Models 20, 30 and 40 can be connected to plugs of HI CUPLA Models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Models 400 and 600 can be connected with plugs of HI CUPLA models 400, 600 and 800. Please see page 19 for "HI CUPLA Series Interchangeability".

Minimum Cross-Sectional Area (r						
Model	PV-20SM	PV-30SM	PV-40SM	PV-400SM	PV-600SM	
Min. cross-sectional area	38	41	41	94	94	
				1 1		

## **Suitability for Vacuum**

Models and Dimensions

Not suitable for vacuum application in either connected or disconnected condition.



Socket Sleeve H Mass Dimensions (mm) Model (Thread) (a) L øD E1 E₂ H(WAF) øC øB PV-20SM R 1/4 Rc 1/4 225 (79) 26.5 (50.5)(70)Hex 22 29 7 PV-30SM Rc 3/8 (80) 26.5 (50.5)(70) Hex.22 29 R 3/8 10 229 PV-40SM R 1/2 Rc 1/2 235 (82)26.5 (50.5)(70)Hex 22 29 14 PV-400SM R 1/2 Rc 1/2 411 (94) 35 (61.5)(82) Hex.30 37.5 13 PV-600SM R 3/4 18 Rc 3/4 424 (97) 35 (61.5) (82) Hex.30 37.5

WAF : WAF stands for width across fi

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produc

# **PURGE LINE CUPLA**

Simple air line coupling manifold with residual pressure release function



## Residual pressure can be released by a mere lever turn. Very smooth connection/disconnection!

- Single action, just push in the plug to connect regardless of internal pressure in socket.
- No unpleasant noise of air pressure discharge and no hose whip motion on disconnection for safety operation.
- Safe design socket valve will not open or close unless plug is connected.
- Even after connection, a lever turn will open/close valve with perfect control of air flow or line shut-off.
- Enables simultaneous air supply to three outlets from a single air line. (A single outlet PURGE HI CUPLA is also available – see the pages of PURGE HI CUPLA for details.)





			1	A.
Specifications				-32
Body material		Brass (Ch	rome plated)	Na
Size	Inlet		R 1/2	2
5120	Outlet		Socket (PV-30SM	
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.0	10	10	145
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia
				6. 1
Maximum Tightening To	orque		and the second second	Nm {kgf•cm}
Size (Thread)			/2"	
Torque		30 -	(306}	

## **Flow Direction**

Fluid must run from the intake port to the outlet ports. Please refer to the flow directions (arrows) on the "Models and Dimensions."

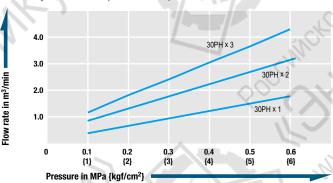
 $(mm^2)$ 

### Interchangeability

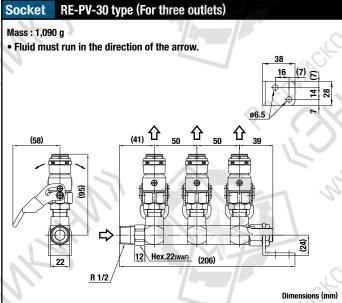
Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

### Minimum Cross-Sectional Area

Min. cross-sectional area


### Suitability for Vacuun

Not suitable for vacuum application in either connected or disconnected condition.


41

### **Pressure - Flow Characteristics**

[Test conditions] • Fluid : Air • Temperature : Room temperature

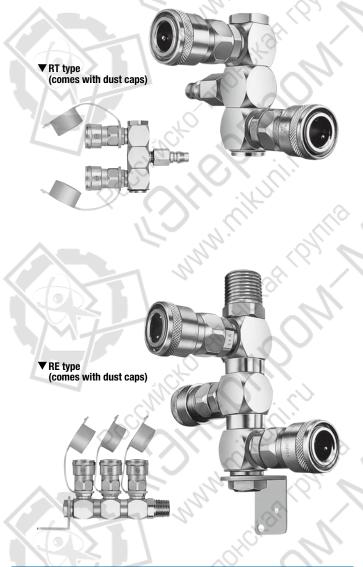


## Models and Dimensions



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produc

WAF : WAF stands for width across fla


# **ROTARY LINE CUPLA**

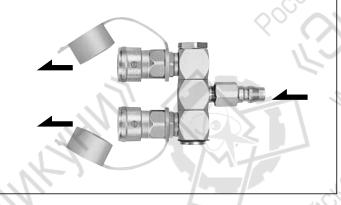
Simple design air line couplings on free turn manifold



## Each air outlet can be turned freely to any angle independently.

- Multiple outlets are available from single air supply source.
- Sideway air outlets are rotatable to any angle. Possible hose twists can be eliminated by the component couplings' swivel mechanism.
- . Choose either RT type (2 outlets) or RE type (3 outlets) to suit your application.




51 NITTO KOHKI CO., LTD. CUPLA

Body material	Body	Body : Brass (Chrome plated), CUPLA : Steel (Chrome plated)				
Model	RT Type	e (for two	branch lines)	RE Type	e (for thre	ee branch lines)
	Inlet	Inlet HI CUPLA Plug 20PF Inlet			R 1/2	
Size	Outlet	Outlet 2 sockets for HI CUPLA Model 20		Outlet	3 sockets for HI CUPLA Model 2	
Pressure unit	м	Pa	kgf/cm ²	ba	ar	PSI
Working pressure	1.	5	15	1	5	218
Seal material	Seal m	aterial	Mark	Worl temperat	king ure range	Remarks
Working temperature range	Nitrile	rubber	NBR (SG)	-20°C to	0 +60°C	Standard materia

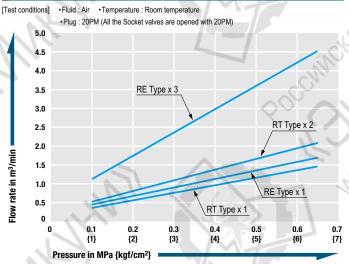
Maximum Tightening Torque (RE Type)	$N \sim 1$	Nm {kgf•cm}
Size (Thread)	1/2"	
Torque	30 {306}	

## **Fluid Flow Direction**

Fluid must run from the inlet port to the outlet ports.



## Interchangeability


Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series Please see page 19 for "HI CUPLA Series Interchangeability".

]	(mm²)
RT type	RE type
- 33	3

## Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

### Pressure - Flow Characteristics



## **ROTARY LINE CUPLA** WAF : WAF stands for width across flats **RT type (For two outlets)** • Fluid must run in the direction of the arrow. HI CUPLA Model 20 Socket θ ⇦

ø23

(58)

20PF

Dimensions (mm)

20

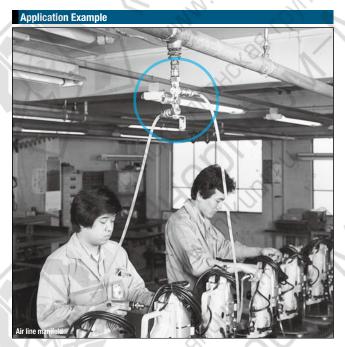
(54)

#### RE type (For three outlets) Socket

## Mass : 660 g

**Models and Dimensions** 

• The product comes with dust caps.


Socket

Mass : 490 g



も 3

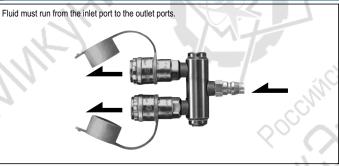
 $\triangleleft$ 



## LINE CUPLA 200T Type, 200L Type, 200S Type

## Simple design air line coupling on manifold




# Enables several air lines to be taken simultaneously from one supply line!

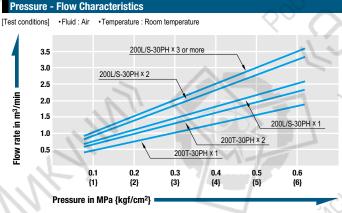
- Just push in the plug into socket for simple and secure connection.
- Multiple outlets are available from single air supply source.
- Choose from the 2-outlet type (Model 200T), the 5-outlet straight type
- (Model 200L) and the 5-outlet star type (Model 200S) to suit your application.

Specifications				-	215	
Body material	E	Body : Aluminum alloy, CUPLA : Steel (Chrome plated)				
Size	Inlet 200T Type : 20PM 200L Type / 200S Type : 400PM					
5120	Outlet 200T Type : 200-20SM 200L Type / 200S Type : 200-20SM, 40					
Pressure unit	м	Pa	kgf/cm ²	bar	PSI	
Working pressure	1	.5	15	15	218	
Seal material	Seal m	naterial	Mark	Working temperature range	Remarks	
Working temperature range	Nitrile	rubber	NBR (SG)	-20°C to +60°C	Standard material	

The products come with dustproof caps.

## **Flow Direction**



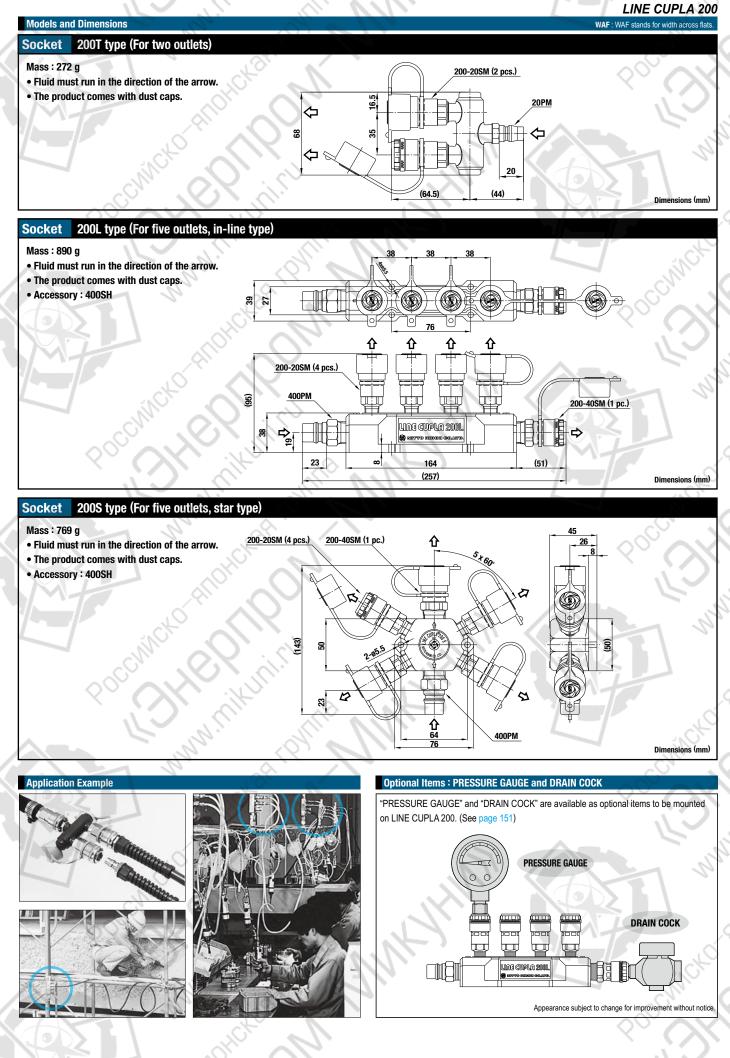

### Interchangeability

Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series Please see page 19 for "HI CUPLA Series Interchangeability".

Minimum Cross-Sectional Area		(mm²)
Model	200T type, 200L type, 200S type	
Minimum cross-sectional area	19	

## Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.




200T type (comes with dust caps)



200L type (comes with an accessory 400SH and dust caps)

200S type (comes with an accessory 400SH and dust caps)



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

CUPLAS NITTO KOHKI CO., LTD. 54

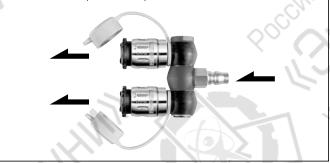
## For Low Pressure (Air) ROTARY FULL-BLOW LINE CUPLA

Free rotating branch air line coupling with low pressure loss & high flow rate



# Each air outlet can be turned freely to any angle independently.

- Multiple outlets are available from single air supply source.
- Sideway air outlets are rotatable to any angle.
- Choose either RT type (2 outlets) or RE type (3 outlets) to suit your application.
- The flow rate increases by 40% to 50% over that of conventional CUPLA.
- During connection and disconnection, the valve is closed, enabling connection/disconnection under zero line pressure.
- When the sleeve of socket is returned to its original position, the purge mechanism releases the residual air pressure in the plug, eliminating unpleasant popping noise and hose whip motion on disconnection.
- Built-in sleeve lock mechanism prevents accidental disconnection of CUPLA, ensuring safe operation.
- The valve can be opened and closed while the socket and plug is connected.



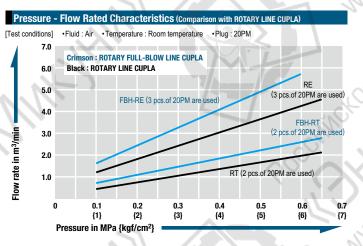

Specifications							
Body material		Zinc alloy					
÷	RT	RT type (For two outlets)			ype (For	three outlets)	
Size	Inlet			Inlet	0	R 1/2	
	Outlet			BLOW CUPLA			
Pressure unit	М	Pa	kgf/cm ²	ba	ar	PSI	
Working pressure	1	.5	15	1	5	218	
Seal material	Seal m	aterial	Mark	Wor temperat	king ure range	Remarks	
Working temperature range	Nitrile	rubber	NBR (SG)	-20°C to	o +60°C	Standard materia	

Maximum Tightening Torque (FBH-RE Type)		Nm {kgf•cm}
Size (Thread)	1/2"	
Torque	30 {306}	

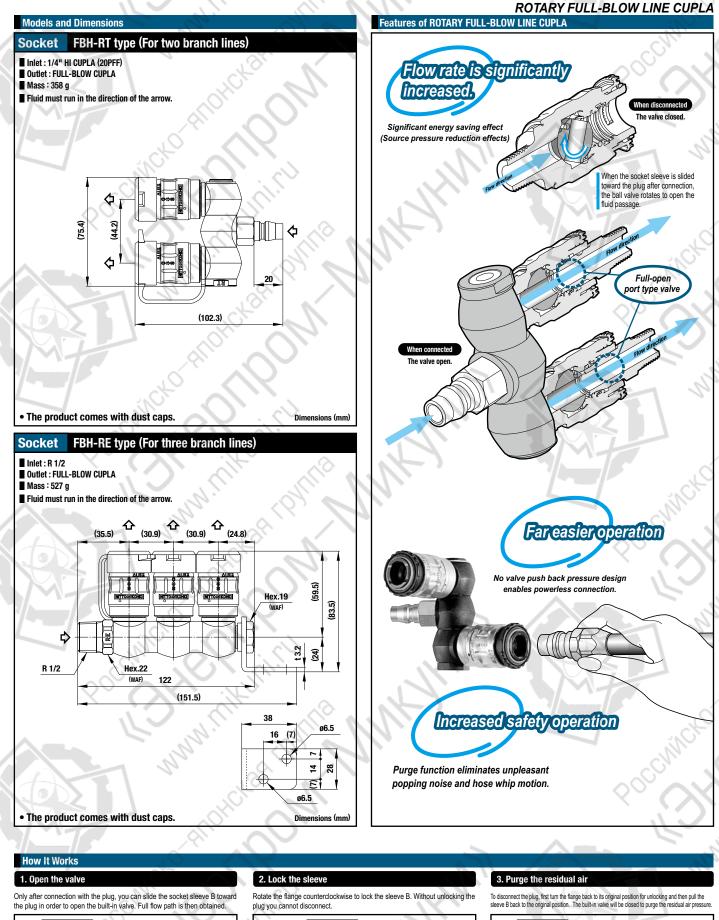
## Flow Direction

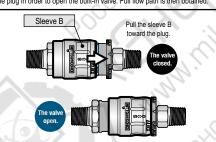
Fluid must run from the inlet port to the outlet ports.

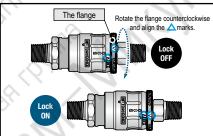


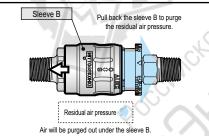

### Interchangeability

Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Not interchangeable with some plugs of plastic HI CUPLA 250 (discontinued product). Please see page 19 for "HI CUPLA Series Interchangeability".


Minimum Cross-Sectiona	(mm²)	
Model	FBH-RT	FBH-RE
Minimum cross-sectional area	44	44


### Suitability for Vacuum


Not suitable for vacuum application in either connected or disconnected condition.

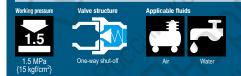



55 NITTO KOHKI CO., LTD. CUPLA DUR










Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

## **For Low Pressure**

# **HI CUPLA ACE**

Lightweight plastic coupling with automatic safety lock for air line applications



## The weight is merely a quarter of steel HI CUPLA's and smooth push-in connection is achieved. Sleeve lock mechanism for safety operation.

- Pressure ratings comparable to steel CUPLA.
- A built-in "lock mechanism" locks the sleeve upon connection, thus prevents accidental disconnection.
- Just push plug into socket for simple connection.
- The weight is a quarter of steel HI CUPLA for easy handling.
- Can be used for air and water.
- Air flows in either direction from plug or from socket side when coupled.
- Plug and socket with hose guard nut are also available (see page 64 of NK CUPLA HOSE / NK CUPLA COIL HOSE for details).

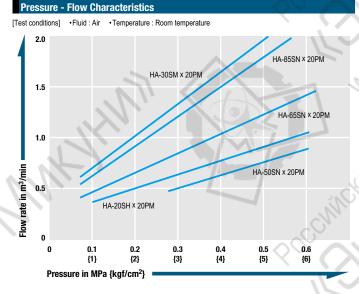


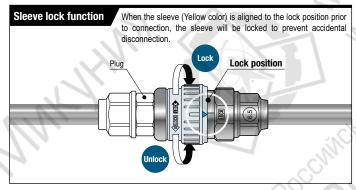
Body material			Engineering plastics (PBT, POM)					
Thread and hose barb		hose barb		1/4", 3/8'	' / 1/4", 3/8"	5		
Size		PN type, SN type         For ø5 mm x ø8 mm, ø6 mm x ø9 mm, ø6.5 mm x ø10 mm           (PNG type, SNG type)         ø8 mm x ø12 mm, ø8.5 mm x ø12.5 mm polyurethane hos						
	T ty	)e	HA-T type	• Inlet : 20P-	PLA • Outlet : H	A-65S x 2		
	•	MPa	1.5	1.0 f	1.0 for plastic plug and Model HA-T			
Working	pressure	kgf/cm ²	15	10 f	10 for plastic plug and Model HA-T			
working	pressure	bar	15	15 10 for plastic plug and Mo		Model HA-T		
PSI		PSI	218	145	for plastic plug and	Model HA-T		
Seal material Working temperature range			Seal material	Mark	Working temperature range	Remarks		
		Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia			

#### **Tightening Torque Range** Nm {kgf•cm 20/30SM 50/60/65SN 80/85SN Model 20PFF 20/30PM 80/85PN 50/60/65PN 1.6 to 2.0 2.2 to 2.8 2.0 to 2.5 2.5 to 3.0 Torque {26 to 31} {16 to 20} {22 to 29} {20 to 25}

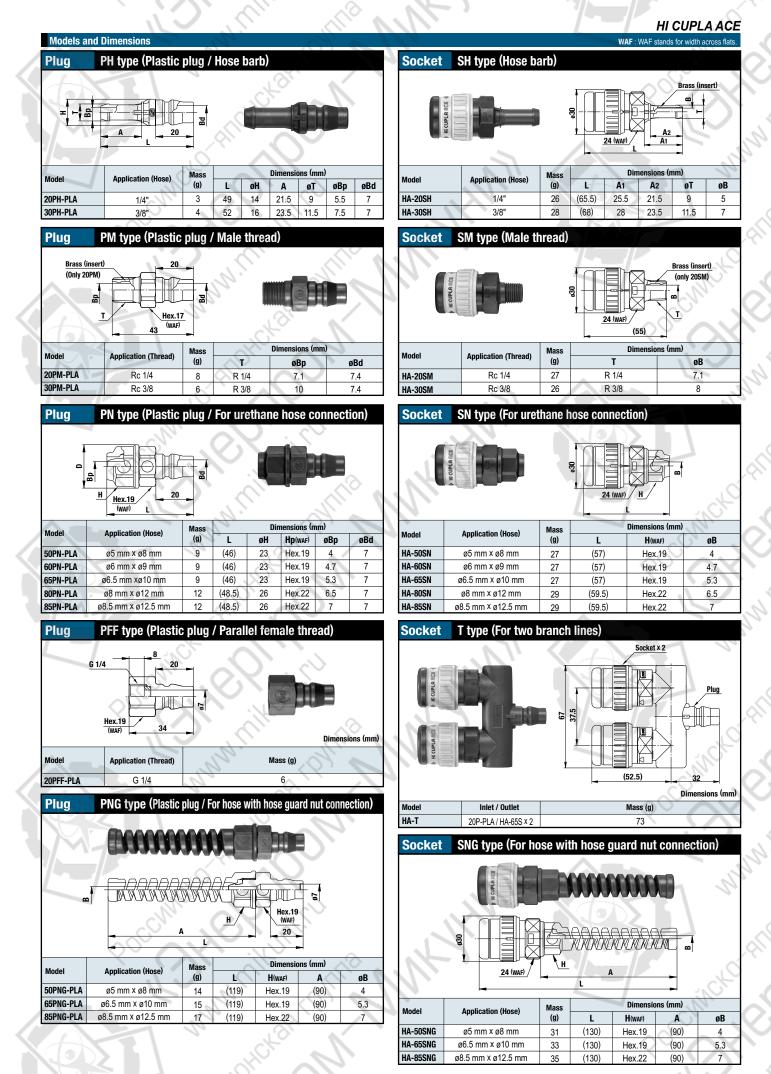
## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.





## Interchangeability

Interchangeable with HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800). Please see page 19 for "HI CUPLA Series Interchangeability".


## **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.





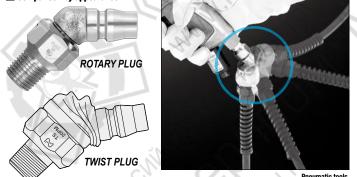
57 NITTO KOHKI CO., LTD. CUPLA



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produ

CUPLA NITTO KOHKI CO., LTD. 58

# **ROTARY PLUG**


## For pneumatic tools and devices



## Newly developed rotary function allows 360° swivelling! Big improvement for handling of pneumatic tools!

- · Rotary neck plug for hose connection to pneumatic tools and pneumatic devices.
- Fits at 45° angle to the tool eliminating annoying offset load caused by connected hose.
- Ideal compact design enables optimum workability by simple body structure. Now far lighter and smaller than conventional models.
- New dust-proof design for increased durability.
- · For air tackers, nailers, impact wrenches and other pneumatic tools.

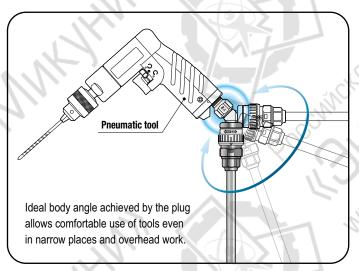
## Comparison by appearance



Pneu	matic	tools

Body material		Steel (Ni	ckel plated)	de la
Size (Thread)		1/4	', 3/8"	5
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.5	15	15	218
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia

3		[-3]
Size (Thread)	1/4"	3/8"
Torque	14 {143}	22 {224}


## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.



## Interchangeability

Interchangeable with sockets of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800). Please see page 19 for "HI CUPLA Series Interchangeability".



Models and	Dimensions		1	10	N.	1.1		WAF : WAF sta	ands for width across flats.
Plug	PM type (Male th	read)				Plug	Model RL-20PFF type (Fen	nale thread)	$\leq \langle \rangle / \rangle$
R	A B B B	*		Hex.19 (WAF)			<u>6 1/4</u>	Hex.1	
	1	$\bigcirc$		1 <u>35°</u>	die.	21	$\nabla$	(51.3)	_
	Annih and the Otherson	Mass	- Chi	Dimensions (mm)	0, 4	11.		135°	ni,
Model	Application (Thread)	(g)	0	D	T				SV.
RL-20PM	Rc 1/4	52	(52.1)	(34.1)	R 1/4	Applica	ation (Thread) : G 1/4		~~~~~
RL-30PM	Rc 3/8	73	(50.8)	(32.8)	R 3/8	Mass:			Dimensions (mm)

## 59 NITTO KOHKI CO., LTD. CUPLE COMPLET

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products.

# **TWIST PLUG**

## For pneumatic tools and devices



## Eliminates hose twisting, kinking, or bending! Greatly improves working efficiency!

- A plug with a free twisting neck for hose connections to pneumatic tools and devices.
- Free angle control (max.70° flexible) provides comfortable job positions, even in narrow spaces or with overhead works.
- The flexible part is reinforced with self-lubricating plastics to give smooth bending action and excellent durability.
- Dust protector over the flexible part prevents dirt and swarf from entering.



			1	and the
Specifications				30
Body material		Steel (Ni	ckel plated)	N
Size (Thread)		1/8", 1	/4", 3/8"	2
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.0	10	10	145
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia

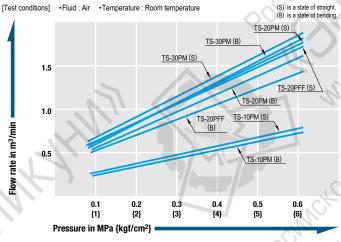
<b>Maximum Tighte</b>	Nm {kgf•cm}		
Size (Thread)	1/8"	1/4"	3/8"
Torque	7 {71}	14 {143}	22 {224}

## **Flow Direction**

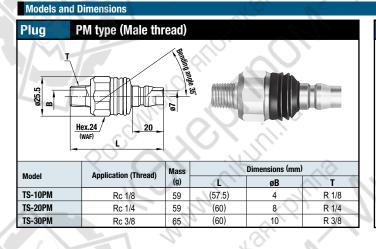




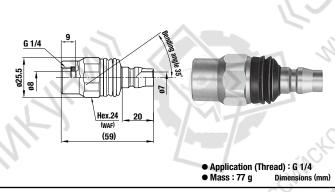
## Interchangeability


Interchangeable with sockets of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800). Please see page 19 for "HI CUPLA Series Interchangeability".

## **Suitability for Vacuum**


Not suitable for vacuum application in either connected or disconnected condition.

Minimum Cross-Se	ectional Area		14	(mm²)
Model	TS-10PM	TS-20PM	TS-30PM	TS-20PFF
Min. cross-sectional area	12.5	38.5	38.5	38.5


## Pressure - Flow Characteristics



WAF : WAF stands for width across flats



Plug Model TS-20PFF (Female thread)



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

COLOR CUPLA NITTO KOHKI CO., LTD. 60

# **PURGE PLUG**

## For air lines with purge mechanism



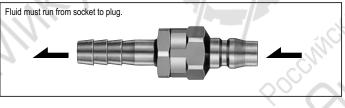
## **Eliminates unpleasant** popping noise and hose whip motion when **CUPLA** is disconnected.



- . When the CUPLA is disconnected, the pressure left in the plug side hose is released gradually without unpleasant popping noise and hose whip motion.
- Unique design of air purge system enables the residual pressure release quickly and quietly.
- A unique but simple purge valve design is good for long and repeated use.
- The function is assured even under a high supply pressure or with a long hose. Note: This product is not a check valve to totally stop the air flow.



				~			
Specifications				11:			
Body material		Steel (Chr	ome plated)	CV.			
Size	1/4", 3/8", 1/2" / ø6.5 mm x ø10 mm, ø8.5 mm x ø12.5 mr						
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	1.0	10	10	145			
Seal material	Seal material	Mark	Working temperature range	Remarks			
Working temperature rang	e Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia			


## **Tightening Torque Range**

Nm {kgf•cm}

Torque To mount on urethane hose, slide it over to the hose barb and lighten the nut until it is flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

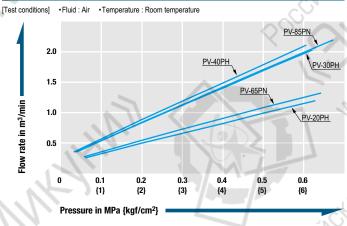
9 to 11 {92 to 112}

## **Flow Direction**



## Interchangeability

Interchangeable with sockets of HI CUPLA models 10, 17, 20, 30 and 40.

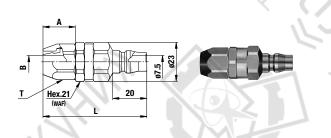

Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800 Please see page 19 for "HI CUPLA Series Interchangeability".

<b>Minimum Cross-S</b>	ectional Are	a			(mm²)
Model	PV-20PH	PV-30PH	PV-40PH	PV-65PN	PV-85PN
Min. cross-sectional area	19.6	44.1	50.4	22.0	44.1

### **Suitability for Vacuum**

Not suitable for vacuum application in either connected of disconnected condition

### **Pressure - Flow Characteristics**




WAF : WAF stands for width across fla

### Models and Dimensions

Plug	PH type (Hose ba	rb)				
-			07.5			
		20		2		>
Madal		20 Mass		Dimensi	ons (mm)	>
Model	A L Application (Hose)			Dimensi	ons (mm) ØB	DT0
		Mass	<b>L</b> (70)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	<b>øT</b> 8.4
Model PV-20PH PV-30PH	Application (Hose)	Mass (g)	R	A	øB	

Plug PN type (For urethane hose connection)



	A	Mass	Dimensions (mm)				
Model	Application (Hose)	(g)	L -	A	øB	T(WAF)	
PV-65PN	ø6.5 mm x ø10 mm	71	(59)	17	5.3	Hex.17	
PV-85PN	ø8.5 mm x ø12.5 mm	78	(61)	19	7.5	Hex.19	

nes with the produc ore use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that co

# ANTI-VIBRATION PLUG HOSE

Plug hose for vibrating and percussive air tools

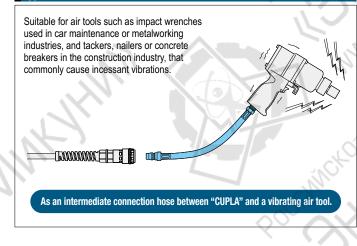


# Protects the CUPLA from shock generated by vibrating tools and impact tools.

- Optimizes life and prevents wear of "CUPLA" by absorbing strong shocks generated by connected vibrating tools.
- Prevents hard-to-notice flow reduction caused by "CUPLA" wear under continuous vibration.
- Flexible rubber hose allows free and wide range of tool motion.

Applicable fluid			Air	N.
Model	SHA	A-3-2R	SH	A-3-3R
Size (Thread)	R	1/4"	- 00F	R 3/8"
Inlet (Plug)		HI CUPLA	A Plug 30PH	
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	1.5	15	15	218
Air hose		Rubber	nose for air	
Overall length		32	) mm	0
Minimum bend radius	$\cdot$	13	5 mm	1 3
Maximum Tightening	Torque			Nm {kgf•cm}
Size (Thread)	R	1/4	R	3/8

	-	
Interc	hangeahility	


Interchangeable with sockets of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800) Please see page 19 for "HI CUPLA Series Interchangeability".

14 {143}

22 {224}

## Application

Torque



SHA-3-2R R 1/4 male thread type





# **DUSTER CUPLA**

Air line coupling with air blower function



## Three functions in one: connection, air blow, hose twist release ! Dust blow without detaching the tool !

- HI CUPLA comes with compact air blow function.
- · Improves job efficiency by air blow with tool still connected to hose.
- Ball bearing swivel mechanism prevents hose twist and relieves tension on operator's hand.
- Special design of air blow button switch is free from in line air pressure no hard press down required.
- Also simple is routine water drain from air line before starting daily work.



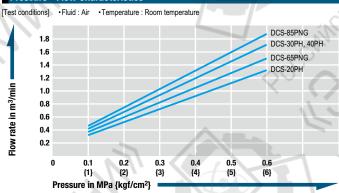
Body material	Body : Alu	uminum alloy, CU	PLA : Steel (Chro	me plated)		
Size	For ø6.5 x	For 1/4", 3/8", 1/2" hose For ø6.5 x ø10 mm, ø8.5 x ø12.5 mm polyurethane hose				
Pressure unit	MPa	kgf/cm ²	bar	PSI		
Working pressure	1.0	10	10	145		
Seal material	Seal material	Mark	Working temperature range	Remarks		
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard materia		

Tightening Torque	Range	Nm {Kgr•cm}
Model	65PNG	85PNG
Torque	5 to 6 {51 to 61}	7 to 8 {71 to 82}

To mount on urethane hose, slide it over to the hose barb and tighten the nut until it is flush against the hose barb base. It is recommended that grease is applied to the inside of the nut (threaded part and hose contact part) for easy tightening.

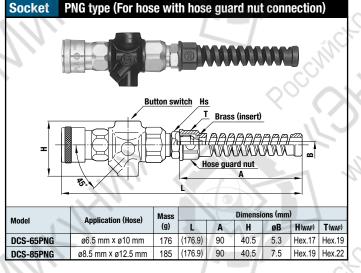
## **Flow Direction**




### Interchangeability

Interchangeable with plugs of HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series. Please see page 19 for "HI CUPLA Series Interchangeability".

### **Suitability for Vacuum**


Not suitable for vacuum application in either connected or disconnected condition.

### Pressure - Flow Characteristics



#### Socket PH type (Hose barb) Button switch Application Dimensions (mm) Mass Model (Hose) (g) øΤ H. øΒ L A DCS-20PH 1/4" 168 (117.9) 30 40.5 5 9 DCS-30PH 3/8' 171 (121.9)34 40.5 7.5 11.3

WAF : WAF stands for width across flats



1/2'

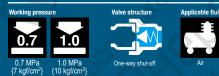
193

(123.9)

36

40.5

7.5


15

DCS-40PH

Models and Dimensions

# NK CUPLA HOSE NK CUPLA COIL HOSE

Couplings with polyurethane hose for air lines



## HI CUPLA ACE sockets with polyurethane hoses are now standard stock items. Push-to-connect design for quick piping.

- The HI CUPLA ACE socket is mounted on pliable polyurethane hose featuring excellent durability and wear resistant with hose guard nut to prevent possible kinking.
- Plastic socket will cause minimum risk of damage even in contact with tools or equipment.
- Air flows in either direction from plug or from socket side when coupled.
- Spiral polyurethane coil hoses processed from straight tube have self-recoiling feature.

## Models and Dimensions / Hose length

## Plug / Socket NK CUPLA HOSE

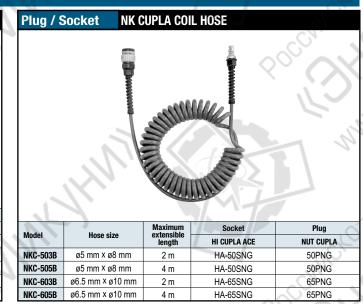
		ICKO'		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<b>M</b> - 4-1	2000	Hose	Socket	Plug
Model	Hose size	Hose length	Socket HI CUPLA ACE	Plug NUT CUPLA
	Hose size ø6.5 mm × ø10 mm			
NKU-605B		length	HI CUPLA ACE	NUT CUPLA
VKU-605B VKU-610B	ø6.5 mm × ø10 mm	length 5 m	HI CUPLA ACE HA-65SNG	NUT CUPLA 65PNG
Model NKU-605B NKU-610B NKU-620B NKU-810B	ø6.5 mm × ø10 mm ø6.5 mm × ø10 mm	length 5 m 10 m	HI CUPLA ACE HA-65SNG HA-65SNG	NUT CUPLA 65PNG 65PNG

Specifications					205		
Body material		Socket : Engineering plastics (PBT, POM) Plug : Steel (Chrome plated)					
Size		ø5 mm × ø8	mm, ø6.5 mm ×	nm × ø10 mm, ø8.5 mm × ø12.5 mm			
	MPa	NK CUPLA	HOSE : 1.0	NK CUPLA COIL HOSE : 0.7			
Working pressure	kgf/cm ²	NK CUPLA	HOSE : 10	NK CUPLA COIL HOSE : 7			
working pressure	bar	NK CUPLA	HOSE : 10	NK CUPLA COIL HOSE : 7			
	PSI	NK CUPLA H	HOSE : 145	NK CUPLA COIL HOSE : 102			
Seal material		Seal material	Mark	Working temperature range	Remarks		
Working temperature	e range	Nitrile rubber	NBR (SG)	-5°C to +60°C	Standard material		

<b>Tightening Torque Rang</b>	e		Nm {kgf•cm}
Size	ø5 mm × ø8 mm	ø6.5 mm × ø10 mm	ø8.5 mm × ø12.5 mm
Torque (Socket)	1.6 to 2.0 {16 to 20}	1.6 to 2.0 {16 to 20}	2.2 to 2.8 {22 to 29}
Torque (Plug)	5 to 6 {51 to 61}	5 to 6 {51 to 61}	7 to 8 {71 to 82}

## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.


1700000C_Doo 🗲

### Interchangeability

Interchangeable with HI CUPLA models 10, 17, 20, 30 and 40. Interchangeable with each models of NUT CUPLA series and HI CUPLA series (except models 400, 600, and 800). Please see page 19 for "HI CUPLA Series Interchangeability".

### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.



## For Low Pressure

# **MINI CUPLA**

Standard type for use on equipment for welding and gas cutting, etc.



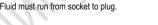
## Exclusively for oxyacetylene equipment. Many variations with higher flow rates!

- · From cylinders to torches, all piping connections associated with welding and cutting equipment are push-to-connect operations.
- Double-lip seal prevents minor leak during connection. Oxygen and fuel gas CUPLA have different sizes to prevent accidental interconnection.
- Pressure loss is minimized to achieve higher flow rate.
- · Various types of end configurations have been standardized to comply with a wide range of welding and cutting equipment

applications. Sockets themselves or plugs themselves are interchangeable with **MINI CUPLA SUPER's** counterparts.

 LINE CUPLA MINI is also available for multiple piping.

oxygen and fuel gas




Plugs with backflow stop valve in MINI CUPLA are designed exclusively for gas welding/cutting to prevent occurrence of gas mixing. Possible backflow of gas during operation can be stopped by cutting the back flow into the cylinder or line. Such valve is adopted in both fuel gas and oxygen plug ding/cutting vina the structur top valve (anto To operate at approx. 0.1 MPa {1 kgf/cm²

fications		15				
terial		В	rass	ch'		
Thread		1/8", 1/4", 3/8" / M16, W12.5-20				
Hose barb	1/4", 5/16", 3/8"					
unit	MPa	kgf/cm ²	bar	PSI		
pressure	0.7	7	7	102		
erial	Seal material	Mark	Working temperature range	Remarks		
temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia		
	terial Thread Hose barb unit pressure erial	terial Thread Hose barb Unit MPa pressure 0.7 erial Seal material	terial B Thread 1/8", 1/4", 3/8" Hose barb 1/4", 5 unit MPa kgf/cm ² pressure 0.7 7 erial Seal material Mark	terial Brass Thread 1/8", 1/4", 3/8" / M16, W12.5-20 Hose barb 1/4", 5/16", 3/8" unit MPa kgf/cm ² bar pressure 0.7 7 7 7 erial Seal material Mark temperature range		

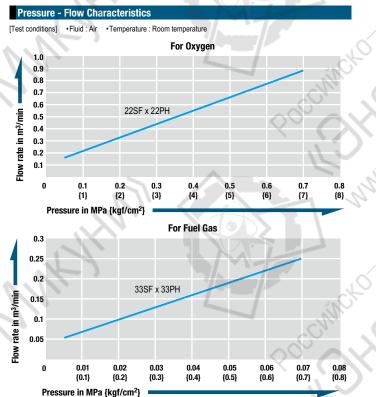
Maximum Tightening Torque Nm {kgf+				
Model	22PF, 22PFB, 22SF, 25PF, 33PF, 33PFB, 33SF	22SM	33SM	
Torque	12 {122}	9 {92}	11 {112}	

## **Flow Direction**

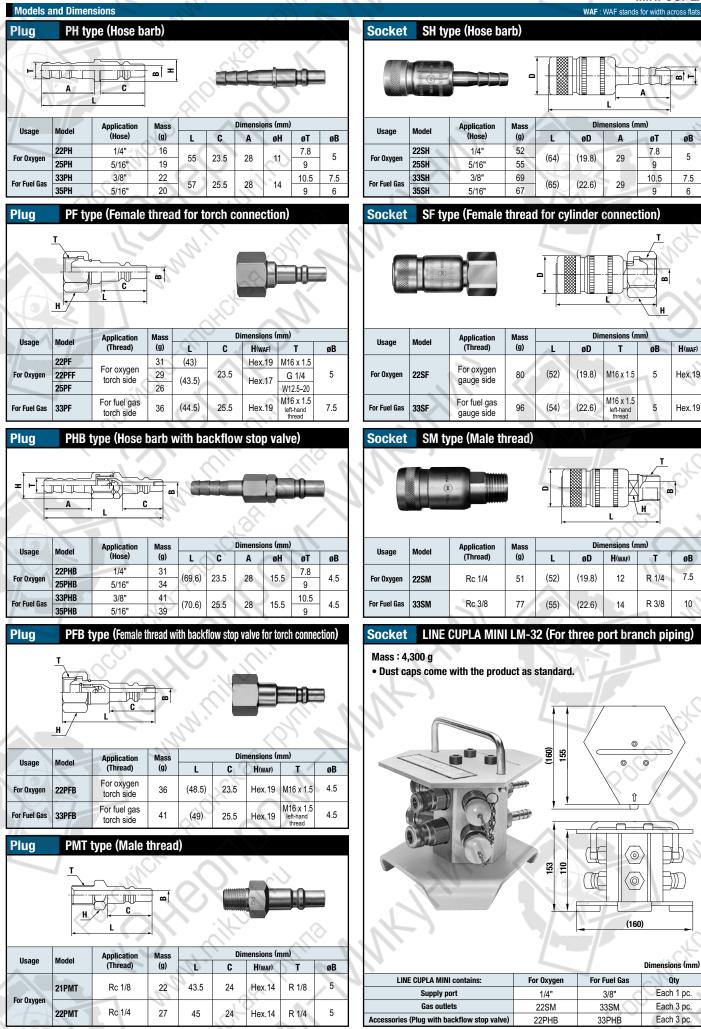




### Interchangeability


To prevent accidental connection, CUPLA for oxygen are not interchangeable with CUPLA for fuel gas. However, plugs and sockets for oxygen are interchangeable regardless of end configurations and plugs and sockets for fuel gas are interchangeable regardless of end configurations.

*Interchangeable with MINI CUPLA SUPER


Minimum	Cross-	Sectio	nal Are	a			Ar			(mm²)
For Oxygen							1-		T	
Plug	22PH	25PH	22PF	22PFF	25PF	22PHB	25PHB	22PFB	21PMT	22PMT
22SH	19.6	19.6	19.6	19.6	19.6	15.9	15.9	15.9	19.6	19.6
25SH	19.6	19.6	19.6	19.6	19.6	15.9	15.9	15.9	19.6	- 19.6
22SF	19.6	19.6	19.6	19.6	19.6	15.9	15.9	15.9	19.6	19.6
22SM	19.6	19.6	19.6	19.6	19.6	15.9	15.9	15.9	19.6	19.6
or Fuel Gas								~	5	~
Plug	33P	'H	35PH	3	3PF	33PI	HB	35PHB	3	3PFB
33SH	44.	1	28.2	4	44.1	15.	9	15.9		15.9
35SH	28.	2	28.2	2	28.2	15.	9	15.9		15.9
33SF	19.	6	19.6		19.6	15.	9	15.9		15.9
33SM	44.	1	28.2		44.1	15.	9	15.9		15.9

## **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.



MINI CUPLA



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

## **For Low Pressure**

# **MINI CUPLA SUPER**

Heavy-duty push-to-connect type for oxyacetylene piping



# Exclusively for welding and cutting equipment.

- From cylinders to torches, all piping connections associated with welding and cutting equipment are push-to-connect operations.
- Plated body for better corrosion resistance.
- Heat-treated plugs for better durability.
- Oxygen and fuel gas CUPLA have different configuration sizes with sleeves in different appearances, silver colored plating for oxygen and copper colored plating for fuel gas, to prevent accidental interconnection.
- Smaller diameter design enables wider range of applications.
- Various types of end configurations have been standardized to comply with a wide range of welding and cutting equipment applications. Sockets themselves or plugs themselves are interchangeable

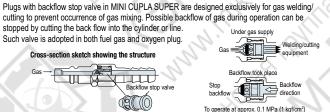
with MINI CUPLA's counterparts.

> Different CUPLA sizes and sleeve colors prevent accidental interconnection of oxygen and fuel gas

> > Can be connected with MINI CUPLA

Heat-treated steel plugs

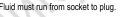
Push-to-connect operation (Built-in automatic shut-off valve in socket)


for increased durability

Plated body for better corrosion resistance

Wide variety of end configurations

## Structure and Principle of Backflow Prevention


## Plug with backflow stop valve



Body ma	terial	Socket : Brass	Socket : Brass (Chrome plated) Plug : Steel (Chrome plated)				
Size	Thread		1/4", 3	/8", M16	5		
0120	Hose barb	1/4", 5/16", 3/8" / 5 mm ID					
Pressure unit Working pressure Seal material Working temperature range		nit MPa		bar	PSI		
		0.7	7	7	102		
		Seal material	Mark	Working temperature range	Remarks		
		Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia		

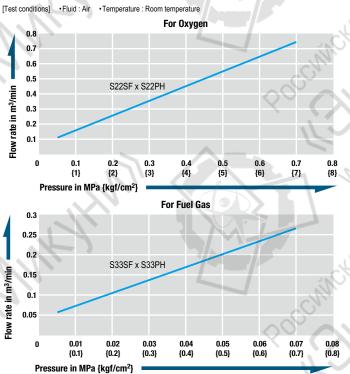
Maximum Tightening Torque			Nm {kgf•cm}	
Model	S22PF, S22SF, S33PF, S33SF	S22SM	S33SM	
Torque	12 {122}	9 {92}	11 {112}	

## Flow Direction

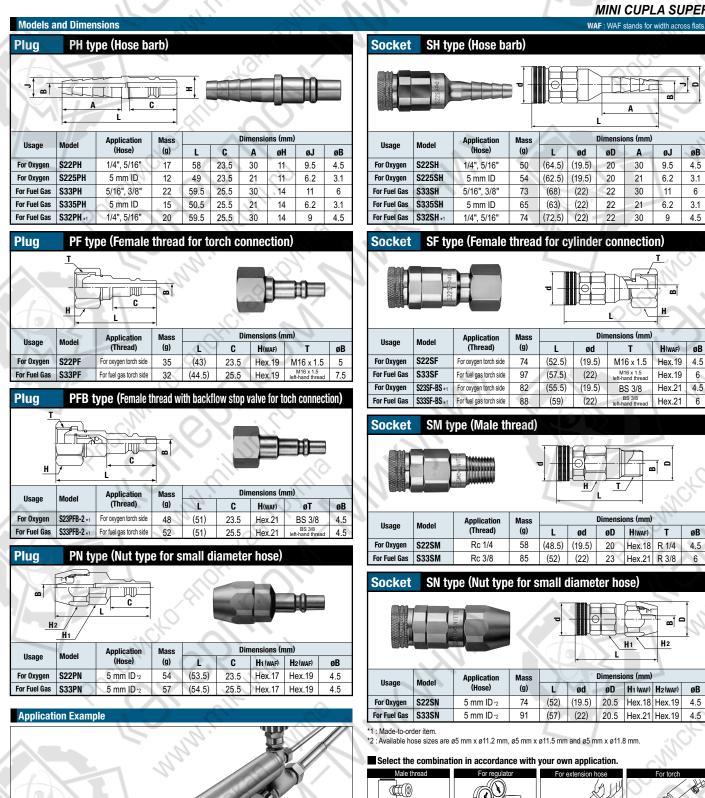




### Interchangeability


To prevent accidental connection, CUPLA for oxygen are not interchangeable with CUPLA for fuel gas. However, plugs and sockets for oxygen are interchangeable regardless of end configurations and plugs and sockets for fuel gas are interchangeable regardless of end configurations. Can be connected with MINI CUPLA series.

Minimum (	Cross-Sectional	Area	(Internet	(mm²
For Oxygen	$\sim$			
Plug	S22PH	S225PH	S22PF	S22PN
S22SH 🔍	15.9	7.5	15.9	15.9
S225SH	7.5	7.5	7.5	7.5
S22SF	15.9	7.5	15.9	15.9
S22SM	15.9	7.5	15.9	15.9
S22SN	15.9	7.5	15.9	15.9
For Fuel Gas				~~~~
Plug	S33PH	S335PH	S33PF	S33PN
S33SH	28.2	7.5	28.2	15.9
S335SH	7.5	7.5	7.5	7.5
S33SF	28.2	7.5	28.2	15.9
S33SM	28.2	7.5	28.2	15.9
S33SN	15.9	7.5	15.9	15.9


### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.

## Pressure - Flow Characteristics



## **MINI CUPLA SUPER**





Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

Suggested combination

SH x PH

(83)

Suggested combination

SF X PH

(FQ& Suggested combination

SM × PH

Suggested combination

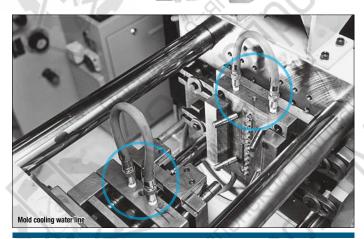
SH x PF

## **For Low Pressure**

# **MOLD CUPLA**

General purpose and mold coolant port coupling




## **Designed for quick replacement** for die and mold ! **Rust resistant models having** many variations.

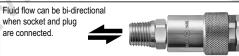
- · Space saving design for molds with closely spaced coolant ports.
- · Long sleeve socket facilitates connection/disconnection with plug embedded in mold.
- Enables quick mold cooling water line connection/disconnection.
- Various sizes and end configurations to suit a wide variety of mold applications.
- . Can be connected with SUPER CUPLA, excluding K3 and K4 types.
- Push-to-connect design. (Built-in automatic shut-off valve in the socket) Also available is CUPLA without valve (Please specify in ordering).
- CUPLA for braided hose connection requires no hose clamp. (Model K-90SN)










Speci	fications				15			
Body ma	iterial	Brass						
Size	Thread	1/8", 1/4", 3/8"						
3120	Hose barb	Hose: 1/	/4", 3/8" / Braide	d hose: ø9 mm >	ø15 mm			
Pressure	unit	MPa	kgf/cm ²	bar	PSI			
Working	pressure	1.0	10	10	145			
Cool mot	torial	Seal material	Mark	Working temperature range	Remarks			
Seal mat Working	ternal temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard material			
	tomporataro rango	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Available on request			

the specifications of braided hoses to be used.

Maximum Tightening	g Torque		Nm {kgf•cm}
Size (Thread)	1/8"	1/4"	3/8"
Torque	5 {51}	9 {92}	11 {112}

Tighten the nut until it is flush against the hose barb base after pushing a braided hose to the end

## **Flow Direction**



## Interchangeability

Sockets and plugs can be connected regardless of end configurations and sizes. K-0 series are not interchangeable with high flow type K3 and K4 series. Can be connected with SUPER CUPLA.

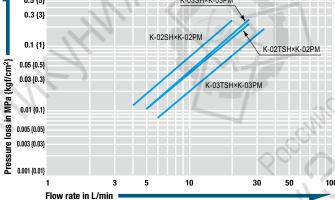
	Minimum	1 Cro	ss-Se	ection	al Ar	ea	- 4							(m	1m²)
	Socket Plug	K-02SH	K-02TSH	K-03SH	K-03TSH	K-02SM	K-02TSM	K-03SM	K-03TSM	K-02SF	K-02TSF	K-02SHL	K-03SHL	K-03TSHL	K-90SN
K	-02PH 🔪	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
K	-03PH	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
K	-01PM	19	19	23	23	23	23	23	23	23	23	15.5	23	23	23
K	-01PM-HH	19	19	23	23	23	23	23	23	23	23	15.5	23	23	23
K	-02PM	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
K	-02PM-HH	19	19	23	23	23	23	23	23	23	23	15.5	23	23	23
К	-03PM	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
K	-01PF	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
κ	-02PF	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
κ	-03PF	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
κ	-01PML	19	19	19	19	19	19	19	19	19	19	15.5	19	19	19
к	-02PML	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28
K	-03PML	19	19	28	28	28	28	28	28	28	28	15.5	28	28	28

### **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.

20 or more

0 to 3


	Plug E	mbedment D	)imer	nsions						
>				Model	D*	C*	L	Remarks		
	Hum.		-	K-01PM	20 or more	0 to 3	28	* Socket interference prevents connection/disconnection		
			-	K-01PM-HH	20 or more	0 to 3	24	when C exceeds 3 mm.		
N			+	K-02PM	20 or more	0 to 3	29	* Size D should be bigger than the outer diameter of the		
	•	+ +	-C	K-02PM-HH	20 or more	0 to 3	24	socket wrench to be used.		

#### nch to be used. (See JISB4636-1, JISB4636-2 30

## Flow Rate – Pressure Loss Characteristics

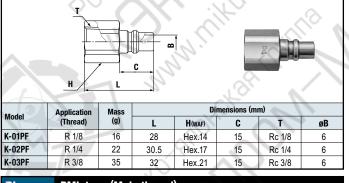


K-03PM

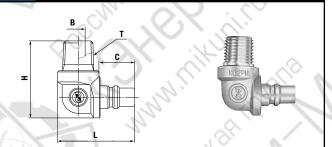


69 NITTO KOHKI CO., LTD. CUPLA DURK COMPLET

## MOLD CUPLA WAF : WAF stands for width across flats


н

Plug	PH type	(Hose	barb)			~				Socket	SH typ
+				B	01			T()	9		
	-	-	2	Ş	$\leq$		ζ.			Model	Application (Hose)
Model	Application	Mass	M		Dim	ensions (	mm)	>		K-02SH	1/4
wodei	(Hose)	(g)	L	A	C	øH	ØT	øBp	øBd	K-02TSH *1	1/4
K-02PH	1/4"	17	42	21	15	12	8	4.5	6	K-03SH	3/8
K-03PH	3/8"	19	42	21	15	15	12	7	6	K-03TSH *1	3/8
Plug	PM type	e (Male	threa	d)						Socket	SM ty
	Ţ	н		2	1.		.0	2.		$\mathcal{N}$	ANTINAN
	È	IÁn		2			107				ž.
			P	<b>a</b>							
			C		. 0	K.		$\mathcal{N}$			
		L			~	<u> </u>		$\sim$			


$\mathbf{N}$	Application	Mass		Din	nensions (m	ım)	
Model	(Thread)	(g)	- L~	H(WAF)	C	Т	øB
K-01PM	Rc 1/8	14	31	Hex.12	15	R 1/8	5.5
K-02PM	Rc 1/4	20	34	Hex.14	15	R 1/4	6
K-03PM	Rc 3/8	35	35	Hex.17	15	R 3/8	6

#### Plug PF type (Female thread)

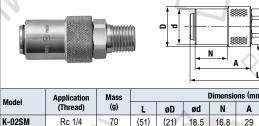
**Models and Dimensions** 



#### Plug PML type (Male thread)



	Application	Mass		n)			
Model	(Thread)	(g)	L	C	Н	T	øB
K-01PML	Rc 1/8	43	33.5	15	30.5	R 1/8	5
K-02PML	Rc 1/4	53	33.5	15	33.5	R 1/4	6
K-03PML	Rc 3/8	71	33.5	15	33.5	R 3/8	6


PM-HH	l type (	Male	hread)
		N	-

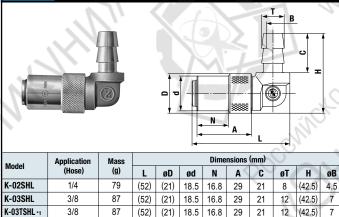
Plug

H		Ð	Plug with	Ŧ	hexagon	socket for	Allen wren	ch
	-			12.	• The	photo shov	vs model K-0	1PM-HH.
	Application	Mass		20,		photo shov ons (mm)	vs model K-0	1PM-HH.
Model	Application (Thread)	Mass (g)	Outside Diameter	- 1		A 7	vs model K-0	1РМ-НН. øB
Model K-01PM-HH				L 27	Dimensi	ons (mm)	vs model K-0	

Socket	SH type	(Hose	barb,						<u> </u>	
										E.
Madal	Application	Mass				Dimensio	ons (mm	)		6.
Model	Application (Hose)	Mass (g)	L	øD	ød	Dimensio N	ons (mm A	) C	ØT	ØB
Model K-02SH			L (67)	øD (21)	F		-	-	<b>øT</b> 8	<b>øB</b> 5
	(Hose)	(g)	L (67) (67)		ød	N	A	C		
K-02SH	(Hose)	(g) 52		(21)	<b>ød</b> 18.5	N 16.8	<b>A</b> 29	<b>C</b> 29	8	5

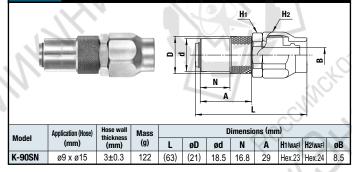
## /pe (Male thread)




	Application	Mass		Dimensions (mm)						
	(Thread)	(g)	L	øD	ød	N	Α	H(WAF)	H	øB
	Rc 1/4	70	(51)	(21)	18.5	16.8	29	Hex.17	R 1/4	6
*1	Rc 1/4	70	(51)	(21)	18.5	16.8	29	Hex.17	R 1/4	6
	Rc 3/8	82	(52)	(21)	18.5	16.8	29	Hex.19	R 3/8	6
*1	Rc 3/8	82	(52)	(21)	18.5	16.8	29	Hex.19	R 3/8	6

#### Socket SF type (Female thread)

K-02TSM K-03SM K-03TSM


115	14									34Ó		
			Application	Mass			ļ	Dimensio	ons (mm	$\sim$		$\mathbf{X}$
		Model	(Thread)	(g)	L	øD	ød	N	Α	C	T	H(WAF)
øB		K-02SF	R 1/4	57	(46.5)	(21)	18.5	16.8	29	14.5	Rc 1/4	Hex.17
6		K-02TSF -1	R 1/4	57	(46.5)	(21)	18.5	16.8	29	14.5	Rc 1/4	Hex.17
6												

#### Socket SHL type (Hose barb)



*1: Also available without socket valve (Made-to-order item), identified by product code TS (e.g. K-03SH without valve is K-03TSH). Also available are sockets with sleeve stopper (Made-to-order item).

#### SN type (For braided hose connection) Socket



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

7

**For Low Pressure** 

# MOLD CUPLA High Flow Type

## High flow type mold coolant port coupling



# Flow rate has doubled to increase productivity.

- High flow type K3 and K4 series are added to MOLD CUPLA series for mold coolant and heated oil port coupling.
- Almost double flow rate compared with our standard K-01, K-02 and K-03 series, increasing productivity.
- Space saving design for molds with closely spaced coolant ports.
- Long sleeve socket facilitates connection / disconnection with plug embedded in mold.
- Enables quick mold coolant hose connection / disconnection.



## Results of reduced cooling time in the field

A customer replaced conventional K-0 series MOLD CUPLA with the K3 series and shortened the cooling time from 30 seconds to 21 seconds meaning an 18% reduction per shot and increased productivity by 20%. Temperature checks at 8 positions on the mold showed that surface temperatures on average had fallen by 3°C, providing evidence of the high cooling efficiency.

## Flow comparison

Coolant water flow rate was checked with a flow meter, which confirmed increase by 1.7 to 1.8 times, when MOLD CUPLA K3 series are used.



Speci	ifications			No. of Concession, Name	15				
Body ma	aterial		В	rass	de				
Size		1/4", 3/8", 1/2"							
3126	Hose barb		$\sum$						
Pressure unit		MPa	kgf/cm ²	bar	PSI				
Working pressure		1.0	10	10	145				
Seal material Working temperature range		Seal material	Mark	Working temperature range	Remarks				
		Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia				
		Fluoro rubber	FKM (X-100)	-20°C to +180°C	Available on reques				

Maximum Tightening 1	Nm {kgf•cm}		
Size (Thread)	1/4"	3/8"	1/2"
Torque	9 {92}	11 {112}	20 {204}

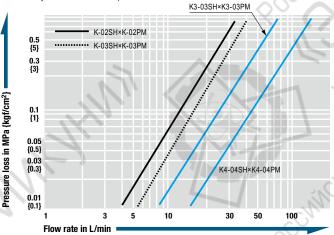
## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.



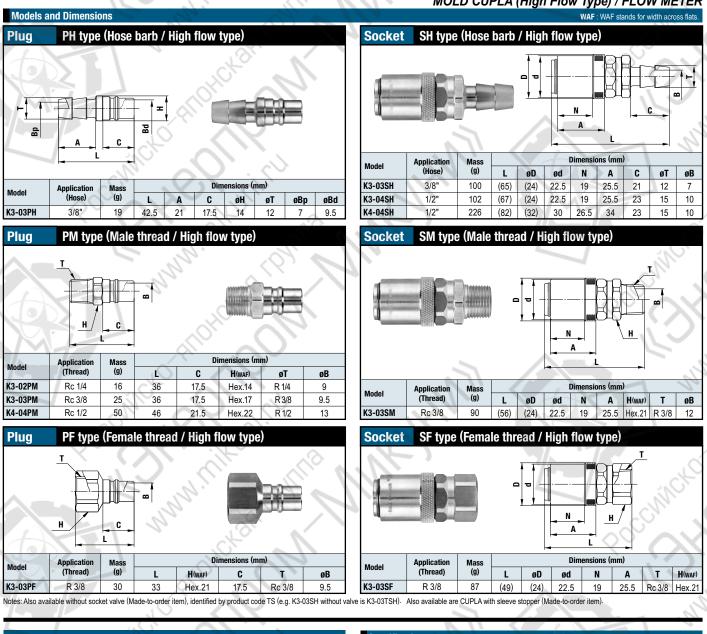
## Interchangeability

K3 series sockets and plugs can be connected regardless of end configuration and sizes. K4 series sockets and plugs can be connected regardless of end configuration and sizes. K3 series and K4 series are not interchangeable with each other. Also not interchangeable with other K-0 series.


Minimum Cross-Sectional Area (mm ² )							
Plug	K3-03SH	K3-04SH	K3-03SM	K3-03SF	K4-04SH		
K3-03PH	38	38	38	38	G		
K3-02PM	38	62.5	62.5	62.5	14		
K3-03PM	38	62.5	62.5	62.5	-C).		
K3-03PF	38	62.5	62.5	62.5	<u> </u>		
K4-04PM	-	-	-	-0	78.5		

## Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

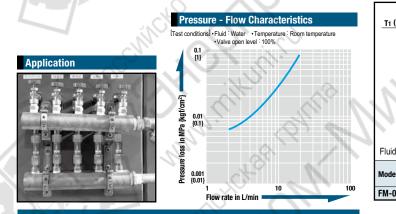

Plug Embedment Dime	ensions				(mm)
	Model	D*	C*		Remarks
	K3-02PM	24 or more	0 to 3	31	* Socket interference prevents connection/disconnection when C exceeds 3 mm.
	K3-03PM	24 or more	0 to 3	31	* Size D should be bigger than the outer diameter of the
	K4-04PM	32 or more	0 to 3	39	socket wrench to be used. (See JISB4636-1, JISB4636-2)

## Flow Rate – Pressure Loss Characteristics (Comparison with MOLD CUPLA) [Test conditions] •Fluid : Water •Temperature : 25'C±5'C



71 NITTO KOHKI CO., LTD. CUPLA






**For Low Pressure** FLOW METER 0.5 0.5 MPa {5 kgf/cm

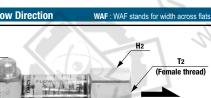
Flow meter with special valve for mold cooling line

# For stable and accurate coolant flow rate.

- · Graduated scale enables easy visual check of coolant flow rate regardless of operator.
- Built-in flow rate adjustment valve enables desired setting of mold conditions for each machine. · Easy resumption of previously set molding conditions to cut lead times.
- T2 side is equipped with rotary function. Even after fixing the body on T1 side to the piping, additional screw tightening on T2 side is possible.



Specifications	1			
Body material	Body	: Brass Gradua	ted tube: Polycar	bonate
Size (Thread)		Both ends Rc 3	/8 female thread	
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	0.5	5	5	72.5
Maximum flow rate		18 L/min (5 to 18	L/min adjustable	
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +60°C	Standard material


• Use within the temperature range of +10°C to +60°C due to plastic float material

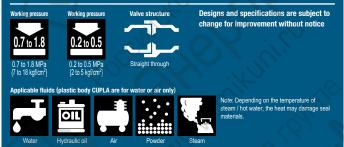
Maximum Tightening To	rque	Nm {kgf•cm}
Torque	11 {112}	

**Models and Dimensions / Flow Direction** 

T1 (Female thread

H1




#### Fluid must flow in the direction of the arrows. Dimensions (mm) Mass (g) D H1(WAF) H2(WAF) T1 T2 н FM-03-B 190 (89) (33) Hex.23 Hex.26 Rc 3/8 Rc 3/8

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

**For Low Pressure** 

# **LEVER LOCK CUPLA Metal Body / Plastic Body**

# For bulk flow, low pressure applications



# Light lever pull-down will connect the plug and socket without fail ready to flow liquid or gases.

- This CUPLA complies with diversified applications in liquid or gas transportation.
- · End-face seal structure enables no bumps or hollows on the internal fluid passage, and ensures smooth fluid transportation.
- A special lip packing (except sizes 3/4" and 1", silicone rubber, and FEP-covered rubber) employed reduces the load to the lever for easy operation.
- · Connection part dimensions comply with US military specifications MIL-A-A-59326.
- . The variety of body materials, sizes and end configurations has been standardized to comply with wide range of applications.
- Additional stopper function design will enhance safety (only for made-to-order metal body product).



Body material (Material	symbol)	Aluminu	m alloy (AL)	), Copper	alloy (BR)	Stai	nless steel (	SUS)	
Size (Thread and hose	e)	3/4" to 2"	2 1/2"	3"	4"	3/4" to 2'	2 1/2" to 3"	4"	
	MPa	1.8	1.1	0.9	0.7	1.8	1.6	1.1	
Working pressure	kgf/cm ²	18	11	9	7	18	16	11	
working pressure	bar	18	11	9	7	18	16	11	
	PSI	261	160	131	102	261	232	160	
Seal material		Seal	material		Mark		Working temperature range		
Working temperature	range	Nitrile	e rubber	15	NBR (SG		-20°C to +80°C		
		Seal	material		Mark		Working temperature	g range	
	2	Silicor	Silicone rubber		SI		-40°C to +1	150°C	
Optional seal material		Fluor	o rubber		FKM (X-10	0)	-20°C to +180°C		
Working temperature	range	Ethylene-pr	opylene rubb	er	EPDM (EP	T)	-40°C to +150°C		
		FEP-covere	d silicon rubbe	er*	l. ≐ `	74	+5°C to +50°C		
		EED covoro	d fluoro rubbe	÷	T _		+5°C to +	50°C	

## Specifications (Plastic Body)

Specifications (			V. ( , N )				
Body material (Material	symbol)		Polypropy	/lene (PP)	~G*		
Size (Thread and hose	e)	3/4", 1", 1 1/2			2", 3"		
	MPa	0.5		0.2			
Working pressure*	kgf/cm ²	5			2		
froming procedure	bar	5			2		
	PSI	72.5	<u> </u>	29			
Seal material		Seal material	Mark		Working temperature range		
Working temperature	range	Nitrile rubber	NBR	(SG)	+5°C to +50°C		
		Seal material	Ma	ark	Working temperature range		
Optional seal materia	~ ~	Silicone rubber	5		+5°C to +50°C		
Working temperature range		Fluoro rubber	FKM (	X-100)	+5°C to +50°C		
	٩.	Ethylene-propylene rubber	EPDM	(EPT)	+5°C to +50°C		

*Pressure at 20°C. Pressure reduces as temperature rises

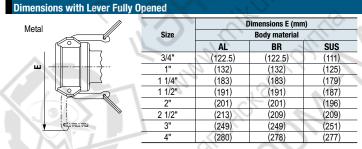
Maximum	Tightening To	rque				-/		Nm {kg	f•cm}
Size (Thread)		3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
Torque	Aluminum alloy Copper alloy	50 {510}	70 {714}	120 {1224}	140 {1428}	260 {2652}	350 {3570}	410 {4182}	470 {4794}
lordng	Stainless steel	90 {918}	120 {1224}	220 {2244}	260 {2652}	350 {3570}	480 {4896}	520 {5304}	590 {6018}

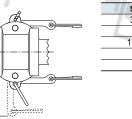
#### **Flow Direction**



#### nterchangeability

Sockets and plugs can be connected regardless of end configurations if the size is same. Can be connected with products whose mating part dimensions are in compliance with MIL-A-A-59326.

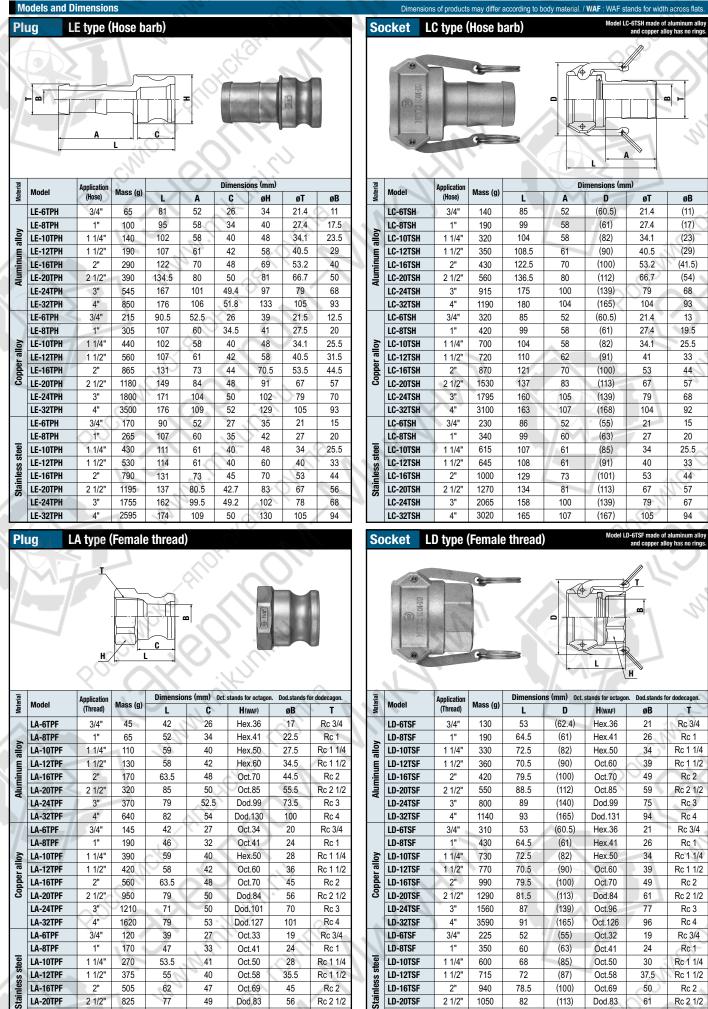

Suitability for Vacuum (M	letal Body)	53.0 kPa {400 mmHg}
Socket only	Plug only	When connected
	_	Operational


#### Suitability for Vacuum (Plastic Body)

Plastic

ш

Not suitable for vacuum application in either connected or disconnected condition.






Size	Dimensions E (mm)
3/4"	(115)
1"	(126)
1 1/2"	(187)
2"	(195)
3"	(249)

73 NITTO KOHKI CO., LTD. CUPLA

# LEVER LOCK CUPLA (Metal)



LA-24TPF

LA-32TPF

875

1470

3"

4"

72

79

51

53

Dod.96

Dod.124

73

100

Rc 3

Rc 4

LD-24TSF

LD-32TSF

(167) Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

(140)

1605

2575

3"

4"

84

94

CUPLA NITTO KOHKI CO., LTD. 74

Dod.97

Dod.125

77

97

Rc 3

Rc 4

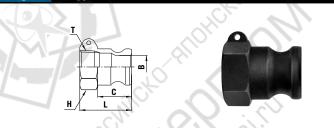
Mode	els and Di	imensio	ns		de.		Â	N'e		Dimensior	ns of products	s may differ ac		VER LC	CK CUP	
lug		F type	Male th	read)		0	<u> </u>			Socket L	.B type	(Male th	read)	Model LB-6T	SM made of alumin	um alloy has n
	I	5	<b>L</b> \			. ct'e	). )	Ń			1					<u>r</u>
		$\sim$	$\sim$	2	~											
	11	TE		<b>⊢</b> <u>∽</u> ∫	Ŕ	100 E	66			(E)		unit.	-	° = "		C
7			}⊢∟ c	1	Ś Ì		4									
-	-	/ L		10	-	1/				*	- G	11	- <			
	H	/	G	L.	$\mathbf{O}$	X_	22	7			$\sim$	1				
Mo	odel	Application (Thread)	Mass (g)	Dimensio L	ons (mm) Oct	stands for octagon H(WAF)	n. Dod.stands f Ø <b>B</b>	for dodecagon.		Model	Application (Thread)	Mass (g)		Dimensi	ions (mm) ØB	T
-	-6TPM	3/4"	70	61	26	Hex.36	16	R 3/4		LB-6TSM	3/4"	110	53	(60.5)	(17)	R 3
	-8TPM -10TPM	1" 1 1/4"	90 140	73 81	34 40	Hex.41 Hex.50	22	R 1 R 1 1/4		≧ LB-8TSM LB-10TSM	1" 1 1/4"	170 310	65 72	(61) (82)	(235) 29.5	R 1
	-12TPM	1 1/2"	140	80.5	40	Oct.55	34.5	R 1 1/2		LB-10TSM LB-12TSM LB-16TSM LB-20TSM	1 1/2"	340	71.5	(90)	36	R1
LF	-16TPM	2"	220	89.5	48	Oct.65	44.5	R 2		LB-16TSM	2"	400	79.5	(100)	(46)	R
	-20TPM -24TPM	2 1/2"	370 470	101	50 52	Oct.80 Dod.99	56 73	R 2 1/2 R 3		LB-20TSM LB-24TSM	2 1/2"	530 715	88.5 90	(112) (139)	(57.5)	R 2
( <del></del>	-32TPM	4"	875	116	54	Dod.130	100	R4		LB-32TSM	4"	920	92	(165)	99	R
	-6TPM	3/4"	185	59	27	Oct.34	20	R 3/4		E LB-6TSM	3/4"	260	52	(53)	19.5	R 3
	-8TPM -10TPM	1" 1 1/4"	280 460	69 81	32 40	Oct.41 Hex.50	24 28	R 1 R 1 1/4		불 LB-8TSM 김 LB-10TSM	1" 1 1/4"	355 620	63 71	(62)	26 28	R 1
LF	-12TPM	1 1/2"	500	80.5	40	Oct.55	36	R 1 1/2		LB-12TSM	1 1/2"	700	71	(91)	36	R 1
	-16TPM	2"	750	89.5	48	Oct.65	45	R 2		LB-6TSM LB-8TSM LB-10TSM LB-12TSM LB-16TSM LB-20TSM	2"	950	81	(100)	51	R
	-20TPM -24TPM	2 1/2" 3"	1290 1480	98 103	50 50.8	Dod.83 Dod.96	56 73	R 2 1/2 R 3		LB-20TSM LB-24TSM LB-32TSM	2 1/2"	1250 1780	86 92	(113)	63 78	R 2
-	-32TPM	4"	3155	113	53	Dod.126	100	R 4		S LB-32TSM	4"	2540	98	(168)	101	R
-	-6TPM -8TPM	3/4"	175	59	27	Oct.33	19	R 3/4		B LB-6TSM	3/4"	210	52.5	(55)	20	R 3
		1 1/4"	255 415	69 80	33 42	Oct.41 Oct.50	24 29.5	R 1 R 1 1/4		툴 LB-8TSM 통 LB-10TSM	1 1/4"	300 520	63 70.5	(63) (85)	25.5 34	R 1
	-12TPM	1 1/2"	575	80	40	Oct.58	36.5	R 1 1/2			1 1/2"	580	71.5	(87)	38	R 1
LF		=						1		EB-12TSM				(	50.5	
LF LF	-16TPM	2"	680	90	46.5	Oct.69	46	R 2	-	LB-121SM LB-16TSM	2"	780	78.5	(101)	50.5	
55				90 99 103	46.5 49 51	Oct.69 Dod.83 Dod.96	46 56 73	R 2 R 2 1/2 R 3		LB-12TSM BB LB-16TSM LB-20TSM ELB-24TSM	2" 2 1/2" 3"	780 980 1490	78.5 84 92	(113)	66	R 2
LF- LF-	-16TPM -20TPM -24TPM -32TPM	2" 2 1/2" 3" 4"	680 1020	99 103 112	49	Dod.83	56	R 2 1/2		LB-16TSM LB-20TSM LB-24TSM LB-24TSM LB-32TSM	2 1/2" 3" 4"	980	84 92 92			R2 R2 R2 R4
א ר ר ר	-16TPM -20TPM -24TPM -32TPM	2" 2 1/2" 3" 4"	680 1020 1415 2275	99 103 112	49 51	Dod.83 Dod.96	56 73	R 2 1/2 R 3			2 1/2" 3" 4"	980 1490 2080	84 92 92 et cap)	(113) (139)	66 78.5	R 2 R
LF- LFJ	-16TPM -20TPM -24TPM -32TPM	2" 2 1/2" 3" 4"	680 1020 1415 2275	99 103 112	49 51 53	Dod.83 Dod.96	56 73 100	R 2 1/2 R 3	5		2 1/2" 3" 4"	980 1490 2080	84 92 92 et cap)	(113) (139) (167)	66 78.5	R 2 R
LF-	-16TPM -20TPM -24TPM -32TPM -32TPM L -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32TPM -32	2" 2 1/2" 3" 4" -PD typ 	680 1020 1415 2275 e (Plug L (Plug (Plug) (Mass (g)) 100	99 103 112 <b>cap)</b>	49 51 53	Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4	5	Socket L Model L-6SD	2 1/2" 3" 4" -SD typ Size 3/4"	980 1490 2080 e (Socku Mass (g) – 35	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5	R2 R R 8 9 0 32
IF.           IF.	-16TPM -20TPM -24TPM -32TPM L 0del 6PD 8PD	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L Mass (g) 100 145	99 103 112 <b>cap)</b>	49 51 53	Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Socket L Model L-6SD L-8SD	2 1/2" 3" 4" -SD typ	980 1490 2080 e (Socku Mass (g) -	84 92 92 et cap) L 32 44	(113) (139) (167)	66 78.5 103.5	R2 R R
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap)		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Socket L Model L-6SD L-8SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2"	980 1490 2080 e (Socko Mass (g) - 35 45 70 90	84 92 92 et cap) L 32 44 57 54	(113) (139) (167)	66 78.5 103.5	<b>ØD</b> 32 36.7 45.5 53.4
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>e (Plug</b> <b>L</b>	99 103 112 Cap)		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Socket L Model L-6SD L-8SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2"	980 1490 2080 e (Socko Mass (g) - 35 45 70 90 140	84 92 92 et cap) L 32 44 57 54 62	(113) (139) (167)	66 78.5 103.5 103.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<b>ØD</b> 32 36.7 45.5 53.4 63
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap)		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Socket L Model L-6SD L-8SD L-10SD L-12SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2"	980 1490 2080 e (Socko Mass (g) - 35 45 70 90	84 92 92 et cap) L 32 44 57 54	(113) (139) (167)	66 78.5 103.5	<b>øD</b> 32 36.7 45.5 53.4
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap)		Intensions (mm A 12 11.5 13 17 11 15 10 15	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Model         L-6SD           L-8SD         L-10SD           L-12SD         L-16SD           L-16SD         L-24SD           L-24SD         L-32SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2 1/2" 3" 4"	980 1490 2080 e (Socko Mass (g) 35 45 70 90 140 210	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5	82 R R R R 8 8 8 8 8 8 8 8 8 8 8 8 9 15 8 9 15 8 119.4
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>e (Plug</b> <b>L</b> ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap)		Intensions (mm A 12 11.5 13 17 11 15 10 15 11	56 73 100	R 2 1/2 R 3 R 4	<u>•</u>	Model         L-6SD           L-12SD         L-12SD           L-16SD         L-24SD           L-24SD         L-32SD           L-32SD         L-32SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2" 2 1/2" 3" 4" 3/4"	980 1490 2080 e (Sock( Mass (g) 35 45 70 90 140 210 290 960 160	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<b>ØD</b> 32 36.7 45.5 53.4 63 75.8 91.5 119.4 32.1
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap)		Intensions (mm A 12 11.5 13 17 11 15 10 15	56 73 100	R 2 1/2 R 3 R 4		Model         L-6SD           L-10SD         L-10SD           L-12SD         L-16SD           L-24SD         L-24SD           L-32SD         L-32SD           L-32SD         L-32SD           L-32SD         L-32SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2 1/2" 3" 4"	980 1490 2080 e (Sock( Mass (g) 35 45 70 90 140 210 290 960	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5	82 R R R 8 8 8 8 8 8 8 8 8 8 8 8 8 9 15 8 9 15 8 9 15
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 <b>Cap)</b> <b>L</b> 46 54 60 68 68 68 72 72 76 45 53 61 69		Dod.83         Dod.96           Dod.124         Dod.124           Immensions (mm         A           12         11.5           13         17           11         15           10         15           11         12           13         17           11         15           10         15           11         15           10         15           11         12           13         17.5	56 73 100	R 2 1/2 R 3 R 4		Result         Model         L           L-6SD         L         L           L-10SD         L         L           L-16SD         L         L           L-32SD         L         L           L-8SD         L         L           L-10SD         L         L           L-10SD         L         L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 2" 2 1/2" 3" 4" 3/4" 1" 1 1/4" 1 1/4" 1 1/4"	980 1490 2080 e (Sock( Mass (g) 35 45 70 90 140 210 290 960 160 150 210 290	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<b>8</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug L (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug) (Plug	99 103 112 <b>Cap)</b> <b>L</b> 466 54 600 688 688 72 72 76 45 53 61 688 688		Dod.83         Dod.96           Dod.124         Dod.124           Imensions (mm         A           12         11.5           13         17           11         15           10         15           11         12           13         17           11         15           10         15           11         12           13         17.5           11         12	56 73 100	R 2 1/2 R 3 R 4		Model         L           600c         L           100c         L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 2" 2 1/2" 3" 4" 3/4" 1" 1 1/4" 1 1/4" 1 1/4" 2"	980 1490 2080 e (Sock( Sock( Mass (g) 35 45 70 90 140 210 290 960 160 150 210 290 420	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<b># D</b> <b># D</b> <b>32</b> <b>36.7</b> <b>45.5</b> <b>53.4</b> <b>63</b> <b>75.8</b> <b>91.5</b> <b>119.4</b> <b>36.7</b> <b>45.5</b> <b>53.4</b> <b>63</b>
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 e (Plug ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 <b>Cap)</b> <b>L</b> 46 54 60 68 68 68 72 72 76 45 53 61 69		Dod.83         Dod.96           Dod.124         Dod.124           Imensions (mm         A           12         11.5           13         17           11         15           10         15           11         15           10         15           11         17           12         13           17         11           15         10           15         11           12         13           17.5         13	56 73 100	R 2 1/2 R 3 R 4		Model         L           L-6SD         L-8SD           L-10SD         L-10SD           L-24SD         L-24SD           L-32SD         L-32SD           L-10SD         L-32SD           L-12SD         L-12SD           L-12SD         L-12SD           L-12SD         L-12SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 2" 2 1/2" 3" 4" 3/4" 1" 1 1/4" 1 1/4" 1 1/4"	980 1490 2080 e (Sock( Mass (g) 35 45 70 90 140 210 290 960 160 150 210 290	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<b>8</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>c</b> (Plug L • • • • • • • • • • • • • • • • • •	99 103 112 <b>Cap)</b> <b>L</b> 466 54 60 68 68 68 72 72 76 45 53 61 69 68		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4		Image         Model           L-6SD         L-8SD           L-10SD         L-10SD           L-12SD         L-16SD           L-20SD         L-22SD           L-12SD         L-12SD           L-12SD         L-16SD           L-20SD         L-20SD	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 2" 2 1/2" 2 1/2" 2 1/2"	980 1490 2080 e (Sock( Sock( Mass (g) 35 45 70 90 140 210 290 960 160 150 210 290 420 630	84 92 92 et cap) Et cap) L 32 44 57 54 62 69 71 74 34 44 55 54 62 69 71 74 34 44 55	(113) (139) (167)	66 78.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 104 15 15 15 15 16 8 8 10 15 15 15 15 15 15 15 15 15 15 15 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 10 103.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 1000.5 1000.5 1000.5 1000.5 1000.5 1000.5	R2           R           R           B           32           36.7           45.5           53.4           63           75.8           91.5           53.4           63           75.8           91.5           53.4           63           75.7
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>c</b> (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 <b>Cap)</b> <b>L</b> <b>Cap)</b> <b>L</b> <b>L</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>CapCap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>CapCapCapCapCap</b> <b>CapCapCapCapCapCapCapCap</b>		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4		Image         Model           L-6SD         L           L-12SD         L           L-12SD         L           L-12SD         L           L-12SD         L           L-12SD         L           L-10SD         L           L-12SD         L           L-16SD         L           L-24SD         L           L-12SD         L           L-12SD         L           L-16SD         L           L-24SD         L           L-23SD         L           L-24SD         L           L-23SD         L           L-23SD         L           L-23SD         L           L-32SD         L           L-32SD         L           L-32SD         L           L-32SD         L           L-32SD         L           L-6SD         L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/4" 1 1/2" 2" 2 1/2" 3" 4" 3/4" 1 1/4" 1 1/4" 1 1/2" 2 1/2" 3" 4" 3/4"	980 1490 2080 e (Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Soc	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 103.5 A → A → A → A → A → A → A → A → 10 15 13 20 15 16 8 8 10 12 15 15 16 12 12 15 16 12	R2           RR           R           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S           S
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>c</b> (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 <b>Cap)</b> <b>Cap)</b> <b>L</b> <b>Cap)</b> <b>L</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>CapCap</b> <b>CapCap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>Cap</b> <b>CapCapCapCapCapCapCapCap</b>		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4		Result         Model         L           Active         L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2 1/2" 3" 4" 1 1/4" 1 1/2" 2 1/2" 3" 4"	980 1490 2080 e (Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Soc	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 <b>A</b> A A  A   A   A  - - -	R2           RR           R           Solution           Solution
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>c</b> (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 <b>Cap)</b> <b>L</b> 460 54 54 54 54 54 54 54 54 54 54 54 54 54		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4		Image         Model         L           Socket         L         L           Socket         L         L           Model         L         L           L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/4" 1 1/2" 2 1/2" 3" 4" 3/4" 1" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4"	980 1490 2080 e (Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Sock( Soc	84 92 92 et cap)	(113) (139) (167)	66 78.5 103.5 103.5 103.5 <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> 10 15 16 8 10 15 16 8 10 15 15 16 12 15 16 12 15 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10	R2           RR           R           Solution           Solution
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>e</b> (Plug L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	99 103 112 Cap) Cap) Cap Cap Cap Cap Cap Cap Cap Cap		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4 R 4 R 4 R 4 R 4 R 4 R 4 R 4 R 4 R 4		Image         Model         L           Socket         L         L           Socket         L         L           Model         L         L           L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/2" 2" 2 1/2" 3" 4" 3/4" 1 1/4" 1 1/2" 2 1/2" 3" 4" 1 1/4" 1 1/2" 2 1/2" 3" 4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 2 1/2" 2 1/2" 3" 4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 2 1/2" 2 1/2" 3" 4" 3 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 2 1/2" 2 1/2" 3 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 2 1/2" 2 1/2" 3 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 2 1/2" 2 1/2" 3 1/4" 1 1/4" 2 1/2" 2 1/2"	980 1490 2080 e (Sock Sock Mass (g) - - - - - - - - - - - - -	84 92 92 et cap) et cap) L 32 44 57 54 62 69 71 74 34 44 55 54 61 69 71 74.5 39 45 51 54 59.5	(113) (139) (167) Dimensi	66         78.5         103.5         ions (mm)         A         8         10         14         15         16         88         10         14         15         16         12         15         16         12         15         16         12         14         15         16         12         14         15         16         12         14         15         16         12         14         15         16         12         14         2.5	ØD           32           36.7           45.5           53.4           63           75.8           91.5           119.4           32.7           45.5           53.4           63           75.8           91.5           119.4           32.1           36.7           45.5           53.4           63           75.7           91.5           119.4           32           37           45           53           63
	16TPM 20TPM 24TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 32TPM 	2" 2 1/2" 3" 4" 	680 1020 1415 2275 <b>e (Plug</b> <b>L</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b> <b>→</b>	99 103 112 Cap) Cap) Cap) Cap) Cap) Cap Cap) Cap Cap Cap Cap Cap Cap Cap Cap		Dod.83 Dod.96 Dod.124	56 73 100	R 2 1/2 R 3 R 4		Image         Model         L           Socket         L         L           Model         L-6SD         L           L-10SD         L-12SD         L           L-10SD         L-24SD         L           L-10SD         L-10SD         L           L-10SD         L-24SD         L           L-10SD         L-12SD         L           L-10SD         L-10SD         L           L-12SD         L         L	2 1/2" 3" 4" -SD typ Size 3/4" 1" 1 1/4" 1 1/4" 1 1/2" 2 1/2" 3" 4" 3/4" 1" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4" 1 1/4"	980           1490           2080           e         (Sock)           e           mass (g)           35           45           70           90           140           210           290           960           160           150           210           290           960           160           150           210           290           960           160           150           210           290           960           160           150           210           290           960           160           150           210           290           95           145           250           300	84 92 92 et cap) et cap) L 32 44 57 54 62 69 71 74 34 44 55 54 61 61 69 71 74,5 39 45 51 54	(113) (139) (167) Dimensi	66         78.5         103.5         103.5         ions (mm)         A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A        A	R2           RR           R           B           32           36.7           45.5           53.4           63           75.7           91.5           119.4           32           36.7           45.5           53.4           63           75.7           91.5           119.4           32           37           45           53

75 NITTO KOHKI CO., LTD. CUPLA CUPLA

# a*l)* ts.

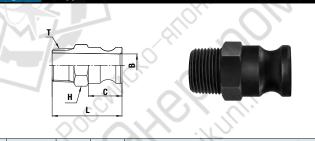
# LEVER LOCK CUPLA (Plastic) ent without notice. / WAF : WAF stands for width across flats.




# Designs and specifications are subject to change for improvement

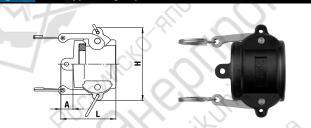
		A		=		and a second			
Material	Model	Application	Mass (g)		$\mathbf{v}$	Dimensi	ons (mm)		
Mat	model	(Hose)	111033 (g)		A	C	øH	øT	øB
	LE-6TPH	3/4"	16	74.5	51.5	(23)	(32)	20.7	14.2
<u>.</u>	LE-8TPH	1"	29	87.5	57.5	(30)	(36.5)	26.3	19
Plastic	LE-12TPH	1 1/2"	73	103	61.5	(41.5)	(53.5)	40	30
-	LE-16TPH	2"	122	119	71	(48)	(63)	52.5	41
	LE-24TPH	3"	221	151.5	106.5	(45)	(91.5)	77	64.5
				-	5		A 7		

Plug

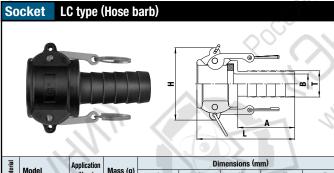

Plug

# LA type (Female thread)




erial	Madal	Application		Dimensions (mm)						
Material	Model	(Thread)	Mass (g)		C	H(WAF)	øB	ъ М		
	LA-6TPF	3/4"	19	42	(26)	Hex.34	21.3	Rc 3/4		
<u>.</u>	LA-8TPF	1"	27	59	(34)	Hex.43	22	Rc 1		
Plastic	LA-12TPF	1 1/2"	65	67	(42)	Ribbed 65	34	Rc 1 1/2		
•	LA-16TPF	2"	102	73	(47.5)	Ribbed 78	42	Rc 2		
	LA-24TPF	3"	211	90	(52.5)	Ribbed 108	71	Rc 3		

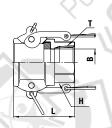
#### Plug LF type (Male thread)




arial		Application	Mass (g)	Dimensions (mm)						
Material	Model	del (Thread)		L	C	H(WAF)	øB	NT (		
	LF-6TPM	3/4"	23	60	(26)	Hex.32	19	R 3/4		
	LF-8TPM	1"	19	71	(34)	Hex.37	23	R 1		
Plastic	LF-12TPM	1 1/2"	72	77	(42)	Ribbed 63	32	R 1 1/2		
-	LF-16TPM	2"	105	84.5	(48)	Ribbed 74	44.5	R 2		
	LF-24TPM	3"	210	102.5	(51.5)	Ribbed 100	72	R 3		

#### Plug L-PD type (Plug cap)

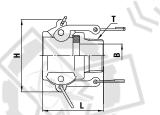



rial			1	Dimensions (mm)					
Material	Model	Size	Mass (g)	LO.	A	L H			
Δ	L-6PD	3/4"	60	45	12	(63.5)			
.0	L-8PD	1"	94	55.5	12	(73)			
Plastic	L-12PD	1 1/2"	214	65	15	(95)			
Ē	L-16PD	2"	219	70.5	16	(106)			
	L-24PD	3"	408	77	17.5	(136)			



Ξ.	Mandal	Application	Mara ()		P	inchaiona un		
Materi	Model	(Hose)	Mass (g)	L	A	H	ØT	øB
	LC-6TSH	3/4"	64	83	52	(63.5)	20.2	14
<u>e</u> .	LC-8TSH	1"	104	97.5	56.5	(73)	26.2	20
lasti	LC-12TSH	1 1/2"	242	109.5	58	(95)	39	29.5
-	LC-16TSH	2"	269	125	70.5	(105.5)	52.5	41
7	LC-24TSH	3"	527	161	102	(136.5)	77	64.5

#### LD type (Female thread) Socket






erial		Application			Dimensi	ons (mm)	
Material	Model	(Thread)	Mass (g)	- L., /	H(WAF)	øB	т _
1	LD-6TSF	3/4"	65	49	Hex.32	21.5	Rc 3/4
.9	LD-8TSF	1"	98	61	Hex.41	27	Rc 1
Plastic	LD-12TSF	1 1/2"	260	77.5	Ribbed 68	39	Rc 1 1/2
∎	LD-16TSF	2"	285	83	Ribbed 80	51	Rc 2
	LD-24TSF	3"	444	90.5	Ribbed 109	77.5	Rc 3 🔌

#### LB type (Male thread) Socket



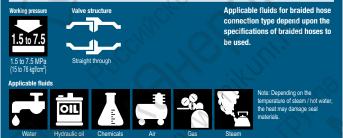


Material		Application			Dimensio	ons (mm)	-
Mate	Model	(Thread)	Mass (g)	L /	н. н. / ⁶	øB	$-\tau_1 O$
	LB-6TSM	3/4"	58	49.5	(63.5)	19	R 3/4
.2	LB-8TSM	1"	88	61	(73)	23.5	R1
Plastic	LB-12TSM	1 1/2"	227	77.5	(95)	37	R 1 1/2
۹.	LB-16TSM	2"	251	82.5	(105.5)	48	R 2
	LB-24TSM	3"	397	88	(136.5)	75	R 3

# Socket L-SD type (Socket cap)






I	arial		0:			Dimensions (mm)	J.
l	Material	Model	Size	Mass (g)	L	A	øD
I		L-6SD	3/4"	10	35.5	12	(32.1)
l	<u>.</u>	L-8SD	1"	18	42.5	11	(36.5)
I	Plastic	L-12SD	1 1/2"	46	53.5	14	(53.2)
I	٩	L-16SD	2"	68	63	16	(63)
I		L-24SD	3"	102	71	17.5	(109)

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# **For Medium Pressure**

# **TSP CUPLA**

## For medium pressure general applications



# Valveless structure suits high viscosity fluids! Various body materials, sizes and end configurations. Braided hose connection types are newly added.

- Valveless construction drastically saves pressure loss and achieves high flow rate.
- Suitable for high viscosity fluids (such as grease).
- Available in various standard body materials, sizes and end configurations to cope with diversified applications and operating situations.
- No hose clamp required! Simple and secure connection to braided hose.
   Note: See the pages of Seal Material Selection Table at the end of this catalog for the suitability of seal materials to fluids.



Dedu meterial			Dr	ass		Stainlage at	lool (CLIC20	4), Steel (Nick	(al plated)
Body material			DI	455		Stall liess S	1991 (20220	4), Steel (Nicr	tei piateu
Size (Thread and hose	e)	1/8", 1/4" 3/8", 1/2"	3/4" 1"	1 1/4" 1 1/2"	2"	1/8", 1/4" 3/8", 1/2"	3/4" 1"	1 1/4" 1 1/2"	2"
	MPa	5.0	3.0	2.0	1.5	7.5	4.5	3.0	2.0
Working pressure	kgf/cm ²	51	31	20	15	76	46	31	20
norking pressure	bar	50	30	20	15	75	45	30	20
	PSI	725	435	290	218	1090	653	435	290
		Seal m	aterial	Ma	ırk	Work	ting Tre range	Rema	arks
Seal material		Nitrile	rubber	NBR	(SG)	-20°C to +80°C			
Working temperature	range	Fluoro	rubber	FKM (	X-100)	-20°C to	+180°C	Standard	materia
$\sim$		Ethylene-		EPDM	(EPT)	-40°C to +150°C			

SUS316 is available as option.

 Maximum working pressure and working temperature range of TSP CUPLA for braided hoses depend upon the specifications of braided hoses to be used.

• Seal material available for braided hoses is nitrile rubber only.

· Seal material available for steel body is nitrile rubber only.

										111
Maxim	um Tighter	ning To	rque						Vm {kg	f∙cm}
Size (Thre	ad)	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
	Steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}
Torque	Brass	5 {51}	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}	150 {1530}	160 {1632}	260 {2652}
	Stainless steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}

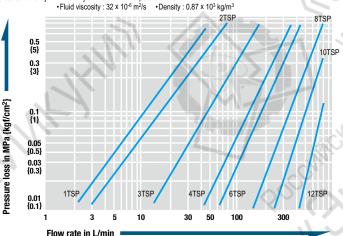
Tighten the nut for braided hoses until it is flush against the hose barb base.

# Flow Direction

Fluid flow can be bi-directional when socket and plug are connected.



## Interchangeability


Sockets and plugs can be connected regardless of end configurations if the first number(s) of the model is the same.

<b>Minimum Cro</b>	ss-Sec	tiona	I Area	3							(mm²)
Model End configurations	1TSP	2TS	P 3	TSP	4TSP	6Т	SP	8TSP	10TSP	12TSI	P 16TSP
H type (Hose barb)	7.0 (ø3)	19. (ø5	-	88.4 Ø7)	78.5 (ø10)		76 15)	283 (ø19)	530 (ø26)	804 (ø32)	1256 (ø40)
M type / F type (Male thread / Female thread)	15.9 (ø4.5)	33. (ø6.		78.5 ø10)	132 (ø13)	22 (ø		452 (ø24)	804 (ø32)	1134 (ø38)	1885 (ø49)
Model End configurations	2TSN- 2TPN-		3TSN 3TPN		4TSN- 4TPN-			SN-150 PN-150	6TSN-1 6TPN-1		TSN-250 TPN-250
N type (For braided hose connection)	23.7 (ø5.5	)	56 (ø8.		95.0 (ø11			132 (ø13)	226 (ø17)		415 (ø23)

Suitability for Vacuum	1.3	x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}
Socket only	Plug only	When connected
_	-	Operational

## Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Hydraulic oil •Temperature : 30°C±10°C •Fluid viscosity : 32 × 10°6 m²/s •Density : 0.87 × 10³



77 NITTO KOHKI CO., LTD. CUPLA

# **Models and Dimensions**

**TSP CUPLA** WAF : WAF stands for width across flats

┌┤╺┙┕

Plug	TPH	type (H	lose ba	arb)						
Ś				<u>-</u>					ARA.	
$\sum$	Application		Mass (g)	~		~	Dimensi	ons (mm	i)	
Model	(Hose)	Steel	Brass	Stainless steel	L - (	øH	A	C	øT	øB
1TPH	1/8"	12 *1	13	12	41	12	20	15.5	6.5	3
2TPH	1/4"	21	23	21	53	14	29	18	8	5
3TPH	3/8"	38	41	38	60	18	32	21	11	7
4TPH	1/2"	(71)	77	71	70	22	39	24	15	10
6TPH	3/4"	134	146	135	84	28	48	28	21	15
8TPH	1"	327	356	329	105	40	57	36	27	19
10TPH	1 1/4"	495	530	500	121	48	70	39	34.5	26
12TPH	1 1/2"	665	715	660	132	55	75	45	41	32
										_

#### Plug TPM type (Male thread)

			10			2		
pplication		Mass (g)		-	Dime	ensions (	mm)	
(Thread)	Steel	Brass	Stainless steel	Ц.	H(WAF)	C	2 т	øB
Rc 1/8	16 *1	17	17	32	Hex.12	15.5	R 1/8	4.5
Rc 1/4	30	33	30	38	Hex.17	18	R 1/4	6.5
Rc 3/8	38	42	38	43 *	Hex.17	21	R 3/8	10
Rc 1/2	81	88	81	52	Hex.22	24	R 1/2	13
Rc 3/4	164	179	165	59	Hex.32	28	R 3/4	17
Rc 1	273	297	274	73	Hex.41	36	R1	25
Rc 1 1/4	520	560	530	83	Hex.50	39	R 1 1/4	32
Rc 1 1/2	655	705	665	93	Hex.54 *2	45	R 1 1/2	38
	1,240				1 1 1			
F	Rc 3/8 Rc 1/2 Rc 3/4 Rc 1 Rc 1 Rc 1 1/4	Rc 3/8         38           Rc 1/2         81           Rc 3/4         164           Rc 1         273           Rc 1 1/4         520	Rc 3/8         38         42           Rc 1/2         81         88           Rc 3/4         164         179           Rc 1         273         297           Rc 1/4         520         560	Rc 3/8         38         42         38           Rc 1/2         81         88         81           Rc 3/4         164         179         165           Rc 1         273         297         274           Rc 1 1/4         520         560         530	Rc 3/8         38         42         38         43           Rc 3/8         38         42         38         43           Rc 1/2         81         88         81         52           Rc 3/4         164         179         165         59           Rc 1         273         297         274         73           Rc 1 1/4         520         560         530         83	Rc 3/8         38         42         38         43         Hex.17           Rc 1/2         81         88         81         52         Hex.22           Rc 3/4         164         179         165         59         Hex.32           Rc 1         273         297         274         73         Hex.41           Rc 1/4         520         560         530         83         Hex.50	Rc 3/8         38         42         38         43         Hex.17         21           Rc 1/2         81         88         81         52         Hex.22         24           Rc 3/4         164         179         165         59         Hex.32         28           Rc 1         273         297         274         73         Hex.41         36           Rc 1 1/4         520         560         530         83         Hex.50         39	Rc 3/8         38         42         38         43         Hex.17         21         R 3/8           Rc 1/2         81         88         81         52         Hex.22         24         R 1/2           Rc 3/4         164         179         165         59         Hex.32         28         R 3/4           Rc 1         273         297         274         73         Hex.41         36         R 1           Rc 11/4         520         560         530         83         Hex.50         39         R 1 1/4

Plug **TPF type (Female thread)** 



	Application	6	Mass (g)		Dimensions (mm)						
Model	(Thread)	Steel	Brass	Stainless steel	Ľ	H(WAF)	C	Т	øB		
1TPF	R 1/8	14 *1	15	14	26	Hex.14	15.5	Rc 1/8	4.5		
2TPF	R 1/4	28	31	29	34	Hex.17	18	Rc 1/4	6.5		
3TPF	R 3/8	43	47	43	38	Hex.21	21	Rc 3/8	10		
4TPF	R 1/2	103	113	104	45	Hex.29	24	Rc 1/2	13		
6TPF	R 3/4	166	181	167	51	Hex.35	28	Rc 3/4	17		
8TPF	R1	321	350	323	60	Hex.41	36	Rc 1	26		
10TPF	R 1 1/4	567	615	573	64	Hex.54 +3	39	Rc 1 1/4	32		
12TPF	R 1 1/2	703	763	630	75	Hex.58 +4	45	Rc 1 1/2	38		
16TPF	R2	1,226	1,374	1,190	83	77 x ø82	51	Rc 2	50		

Plug	TPN type (For braided hose connection)
------	----------------------------------------

		HI			0	70		>	
Madal	Applicatio	n (Hose) •5	Ma	ss (g)		Dir	nensions (	mm)	~
Model	Size (mm)	Hose wall thickness (mm)	Brass	Stainless steel	- <u>L</u> O	H1(WAF)	H2(WAF)	C	ØB
2TPN-60	ø6 x ø11	2.5±0.25	60	55	(47)	Hex.19	Hex.19	18	5.5
3TPN-90	ø9 x ø15	2.0.2	93	87	(52)	Hex.23	Hex.24	21	8.5
4TPN-120	ø12 x ø18	3±0.3	140	130	(60)	Hex.27	Hex.27	24	11
4TPN-150	ø15 x ø22	0.5.0.05	182	170	(68)	Hex.30	Hex.30	24	13
6TPN-190	ø19 x ø26	3.5±0.35	261	245	(76)	Hex.35	Hex.35	28	17
8TPN-250	ø25 x ø33	4±0.4	461	427	(96)	Hex.41	Hex.41	36	23

	Application		Mass (g)			Dim	ensions (	mm)	
Model	(Hose)	Steel	Brass	Stainless steel	4	øD	A	ØT	ØB
1TSH	1/8"	24 *1	26	24	40	17.5	20	6.5	3
2TSH	1/4"	63	69	64	55	24	29	8	5
3TSH	3/8"	95	104	96	62	28	32	11	7
4TSH	1/2"	176	192	177	74	35	39	15	10
6TSH	3/4"	348	379	350	90	45	48	21	15
8TSH	1"	570	605	570	102	58	57	27	19
10TSH	1 1/4"	840	910	850	117	69	70	34.5	26
12TSH	1 1/2"	1,060	1,140	1,070	128	75	75	41	32
16TSH	2"	2,095	2,251	2,100	141	98	80	54	40

# Socket TSM type (Male thread)

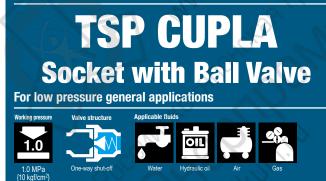
TSH type (Hose barb)

Socket

JUCK		rahe (		n cau)					
							T T T T	j'	C M
Madal	Application		Mass (g)		1	Dir	mensions (	nm)	1
Model	(Thread)	Steel	Brass	Stainless steel	15	øD	H(WAF)	Т	øB
1TSM	Rc 1/8	25 *1	27	26	30	17.5	Hex.14	R 1/8	4.5
2TSM	Rc 1/4	66	72	67	42	24	Hex.19	R 1/4	6.5
3TSM	Rc 3/8	99	108	100	46	28	Hex.23	R 3/8	10
4TSM	Rc 1/2	178	194	179	56	35	Hex.29	R 1/2	13
6TSM	Rc 3/4	343	374	346	65	45	Hex.38	R 3/4	18
8TSM	Rc 1	629	665	633	76	58	Hex.50	R 1	24
10TSM	Rc 1 1/4	950	1,010	955	86	69	54 x ø64	R 1 1/4	32
12TSM	Rc 1 1/2	1,180	1,275	1,190	95	75	58 x ø70	R 1 1/2	38
16TSM	Rc 2	2,040	2,190	2,060	108	98	77 x ø82	R 2	49

#### TSF type (Female thread) Socket






- L							1		
	Model	Application	1	Mass (g)			Dimensi	ons (mm)	
	woder	(Thread)	Steel	Brass	Stainless steel		øD	H(WAF)	Т
	1TSF	R 1/8	25 ×1	27	25	27	17.5	Hex.14	Rc 1/8
	2TSF	R 1/4	57	62	57	32	24	Hex.19	Rc 1/4
	3TSF	R 3/8	83	90	83	35	28	Hex.23	Rc 3/8
I	4TSF	R 1/2	153	167	154	42	35	Hex.29	Rc 1/2
	6TSF	R 3/4	288	314	289	48	45	Hex.38	Rc 3/4
	8TSF	R 1	575	607	575	59	58	Hex.50	Rc 1
	10TSF	R 1 1/4	821	888	825	64	69	54 x ø64	Rc 1 1/4
I	12TSF	R 1 1/2	1,003	1,064	1,005	71	75	58 x ø70	Rc 1 1/2
l	16TSF	R 2	1,765	1,880	1,770	80	98	77 x ø82	Rc 2

# Socket TSN type (For braided hose connection)

			1	K			H2	- - - -	121
	Applicatio	n (Hose) •5	Ma	ss (g)	JY	Di	mensions (	mm)	
Model	Size (mm)	Hose wall thickness (mm)	Brass	Stainless steel	/\ <b>L</b>	øD	H1(WAF)	H2(WAF)	øB
2TSN-60	ø6 x ø11	2.5±0.25	91	84	(49)	24	Hex.19	Hex.19	5.5
3TSN-90	ø9 x ø15	3±0.3	139	129	(54)	28	Hex.23	Hex.24	8.5
4TSN-120	ø12 x ø18	3±0.3	222	206	(62)	35	Hex.29	Hex.27	11
4TSN-150	ø15 x ø22	2 5 1 0 25	255	237	(70)	35	Hex.30	Hex.30	13
6TSN-190	ø19 x ø26	3.5±0.35	435	408	(81)	45	Hex.38	Hex.35	17
8TSN-250	ø25 x ø33	4±0.4	677	633	(93)	58	Hex.50	Hex.41	23


*1 : TSP steel is a made-to-order item. *2 : Stainless steel: 54 x ø60 *3 : Stainless steel: 54 x ø59 *4 : Stainless steel: 58 x ø65 *5 : Braided hoses for TPN type and TSN type should be made of soft PVC and woven by reinforcement thread. • Hydrocarbon type grease is applied to the threaded part of stainless steel nut for TPN type and TSN type to prevent galling. Before use, please be sure to read 'Safety Guide' described at the end of this book and 'Instruction Sheet' that comes with the products Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products **For Low Pressure** 



# One-piece design of TSP CUPLA socket and ball valve. Sleeve stopper mechanism prevent accidental disconnection during connection. (when the valve is open.)

• Socket valve can be opened and shut off while socket and plug are connected.

- Ball valve design provides for high flow rate.
- High viscosity fluids such as grease can be applied.



The handle of the ball valve locks the sleeve to prevent disconnection of the plug during use.

> Interchangeable with standard TSP CUPLA plug in the same size.



	1					1	. 6.1
Model	BV-2TSF	BV-3TSF	BV-4	TSF	BV-6TS	SF	BV-8TSF
Size (Thread)	1/4"	3/8"	1/:	2"	3/4"	2	≥1"
Body material			Br	ass	0	2	
Pressure unit	MPa	kgf/ci	m²		bar		PSI
Working pressure	1.0	10			10		145
Seal material		Seal mat	terial	I	Mark	terr	Working perature range
Working temperature range	CUPLA Part	Fluoro ru	ubber	ŀ	-KM	5°	C to +120°0
	Ball Valve Part	Fluoropolym	er resin		-	-5	5 10 ± 120 C

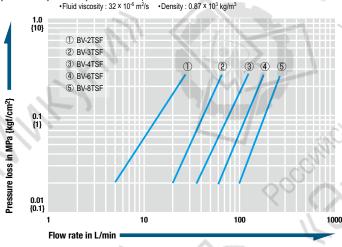
Maximu	ım T	ightening Tor	que			lm {kgf•cm}
Model		BV-2TSF	BV-3TSF	BV-4TSF	BV-6TSF	BV-8TSF
Torque	1	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}

Flow Direction

Fluid flow can be bi-directional when socket and plug are connected.

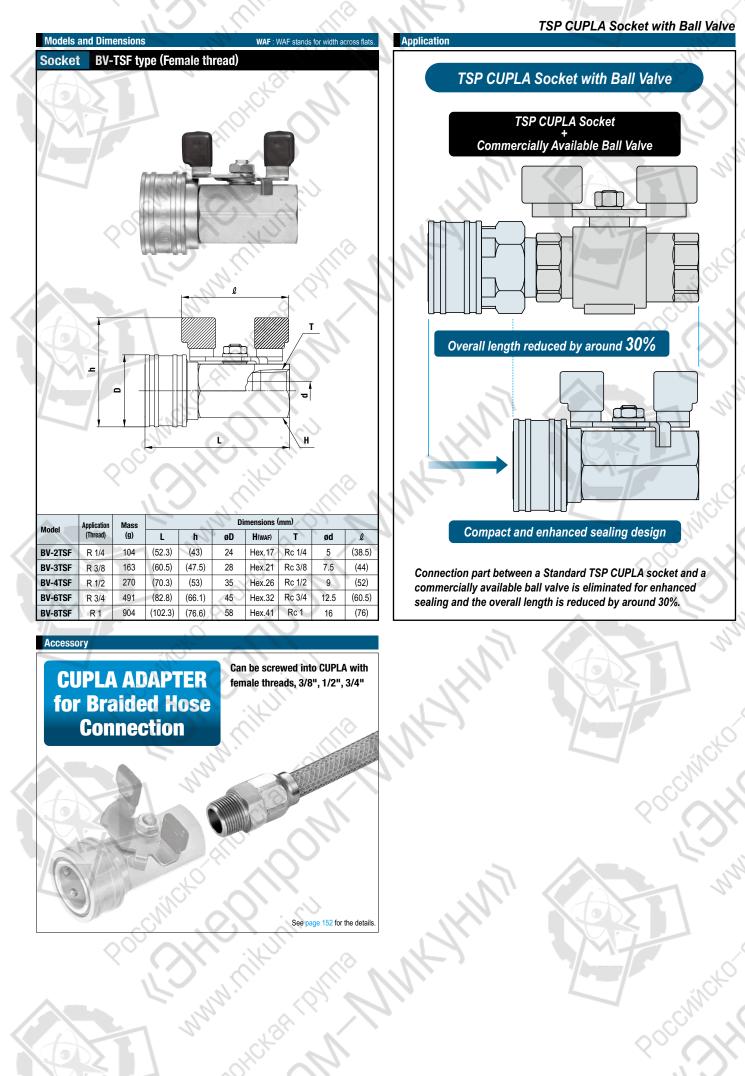


#### Interchangeability


TSP CUPLA plugs of the same size can be connected regardless of end configurations.

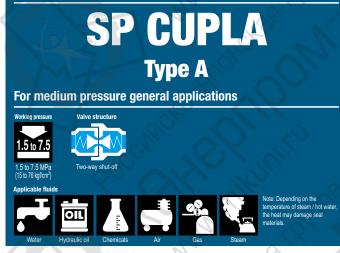
Model	BV-2TSF	BV-3TSF	BV-4TSF	BV-6TSF	BV-8TSE
Min. cross-sectional area	19.6	44.1	63.6	122	201

## **Suitability for Vacuum**


Not suitable for vacuum application in either connected or disconnected condition.

#### Flow Rate – Pressure Loss Characteristics [Test conditions] •Fluid : Hydraulic oil •Temperature : 30'C±5'C





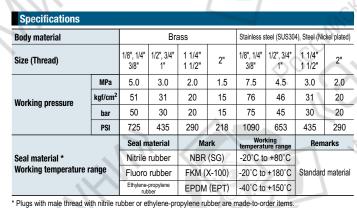





NITTO KOHKI CO., LTD. 80

For Medium Pressure




For medium pressure applications, with automatic shut-off valves in both socket and plug. Various body materials, sizes and end configurations. Plugs with male thread end are also available.

- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.
- Available in various standard body materials, sizes and end configurations to cope with diversified applications and operating situations.



# New self-aligned valve design provides better seal

The new design of the valve head makes smooth self-aligned return to its original position when socket and plug are disconnected. This mechanism enhances safety sealing of individual socket or plug when disconnected (1 to 8SP-A Type).



* Seal material available for steel body is nitrile and fluoro rubber.

Maxim	um Tighter	ing To	rque				- 11	- I	lm {kg	f•cm}
Size (Thre	ad)	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
2.	Steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}
Torque	Brass	5 {51}	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}	150 {1530}	180 {1836}	260 {2652}
	Stainless steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}

Plug with male thread type is only available in brass material.

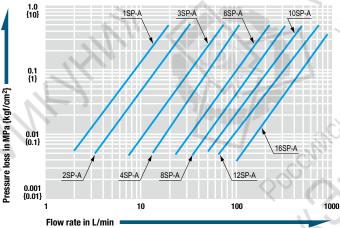


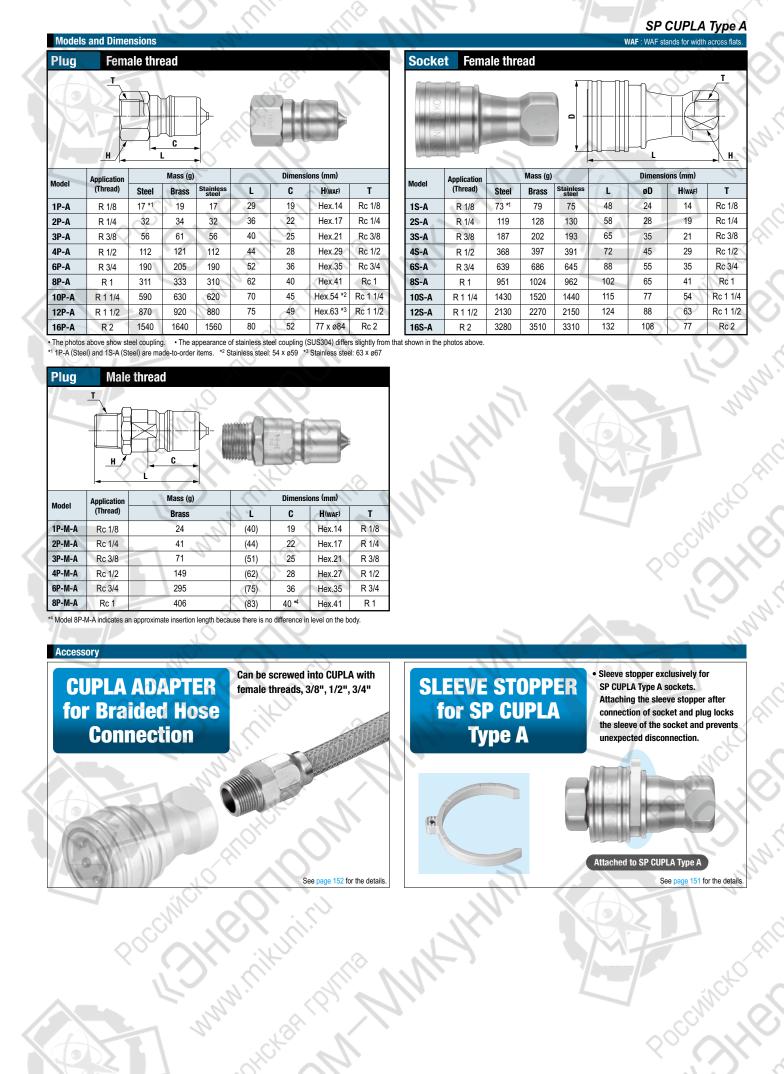
# Interchangeability

Socket and plug of different sizes cannot be connected. Interchangeable with conventional SP CUPLA in the same size.

*Can be connected with SP-V CUPLA but take heed of flow rate change

Minimum Cro	ss-Sec	tional A	rea						(mm²)
Model	1SP-A	2SP-A	3SP-A	4SP-A	6SP-A	8SP-A	10SP-A	12SP-A	16SP-A
Min. Cross-sectional area	14	26	51	73	178	229	395	553	803


Suitability for Vacuum	1.	3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}
Socket only	Plug only	When connected
		Operational


Model	1SP-A	2SP-A	3SP-A	4SP-A	6SP-A	8SP-A	10SP-A	12SP-A	16SP-A
Volume of air admixture	0.6	1.1	2.7	3.9	11	17	29	45	84

Volume of Spillage per Disconnection May vary depending upon the usage conditions.							(mL)		
Model	1SP-A	2SP-A	3SP-A	4SP-A	6SP-A	8SP-A	10SP-A	12SP-A	16SP-A
Volume of spillage	0.4	0.8	2.1	3.4	9.5	15	29	45	84

# Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Water •Temperature: 25°C±5°C





Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produc

**For Medium Pressure** 

# **HOT WATER CUPLA HW** Type

# For temperature control piping



# The most suitable rubber for hot water adopted. Best suited for hot water applications such as plastic moldings.

- The safety lock function prevents accidental disconnection caused by vibration or impact.
- Nickel plated on the liquid contact parts to improve corrosion resistance.
- The socket has double O-ring for improved seal.



How to lock

Slide the Lock Ring in the

direction of the arrow A and

orrection of the arrow A and rotate it simultaneously. When the Stopper is aligned with the shallower cutout on the Lock Ring, the CUPLA will be locked.

Connected state before lock)

			215		
Brass (Nickel plated)					
Plug : R 1/4, R 3/8, R 1/2 / Socket : Rc 1/4, Rc 3/8, Rc 1/2					
MPa	kgf/cm ²	bar	PSI		
2.0	20	20	290		
Seal material	Mark	Working temperature range	Remarks		
Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard materia		
	MPa 2.0 Seal material	Plug : R 1/4, R 3/8, R 1/2 / 5           MPa         kgf/cm²           2.0         20           Seal material         Mark	Plug : R 1/4, R 3/8, R 1/2 / Socket : Rc 1/4, R           MPa         kgf/cm²         bar           2.0         20         20           Seal material         Mark         Working temperature range		

Maximum Tightening	Nm {kgf•cm}		
Size (Thread)	1/4"	3/8"	1/2"
Torque	9 {92}	12 {122}	30 {306}

#### **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected



#### Interchangeability

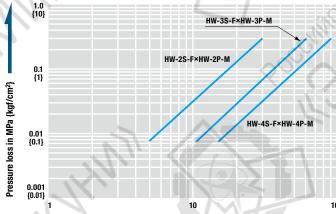
Socket and plug of different sizes cannot be connected.

SP CUPLA Type A and HW Type CUPLA of the same size can be connected regardless of end configurations

However, SP CUPLA Type A has different seal material characteristics, so the product specification and durability will differ. Conduct performance evaluation test under your actual operating environment and conditions within

range of the working conditions of the product.

Minimum Cross-Sectional Area (mm ² )					
Model	HW-2S-F × HW-2P-M	HW-3S-F × HW-3P-M	HW-4S-F × HW-4P-M		
Min. Cross-sectional area	26	51	73		
1/1			Q.1		


Suitability for Vacuum $1.3 \times 10^{-1}$ Pa {1 $\times 10^{-3}$ mm				
Socket only	Plug only	When connected		
_	-	Operational		

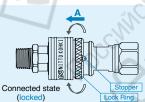
Admixture of Air on Connection May vary depending upon the usage conditions. (mL)						
Model	HW-2S-F × HW-2P-M	HW-3S-F × HW-3P-M	HW-4S-F × HW-4P-M			
Volume of air	1.2	2.7	3.9			

Volume of Spillage per Disconnection May vary depending upon the usage conditions. (mL						
Model HW-2S-F × HW-2P-M HW-3S-F × HW-3P-M HW-4S-F × HV	V-4P-M					
Volume of spillage         0.8         2.1         3.2	1					

#### Flow Rate Pressure Loss Characteristics

[Test conditions] · Fluid : Water Temperature: 25°C±5°C

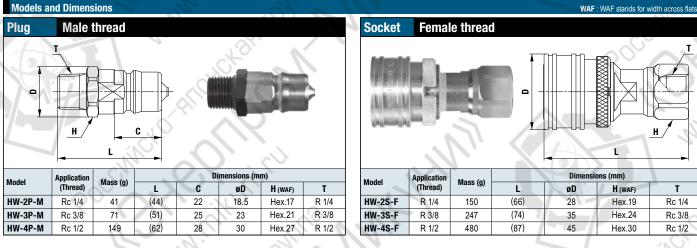



Flow rate in L/min

Socket

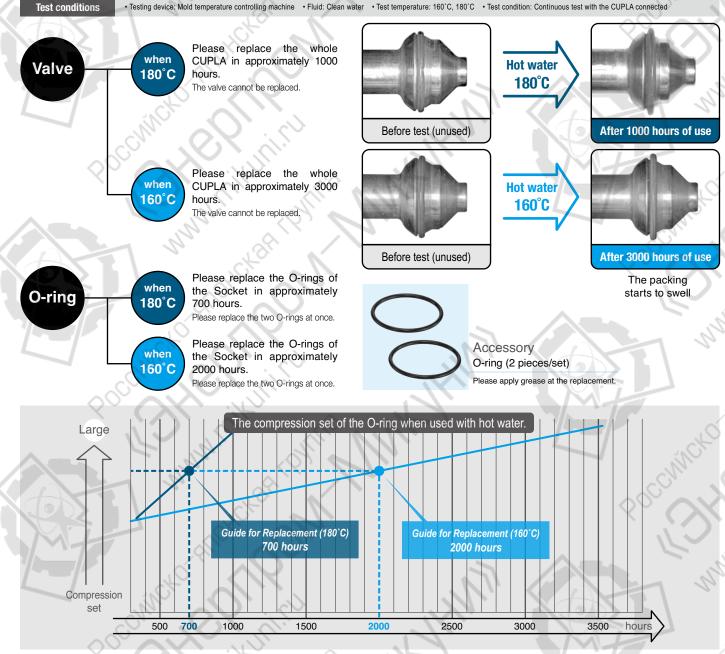
Lock Ring

# How to unlock


Slide the Lock Ring in the direction of the arrow A and rotate it simultaneously. When the Stopper is aligned with the deeper cutout on the Lock Ring, the CUPLA will be unlocked.



# Safety lock function (Sleeve lock)




# HOT WATER CUPLA HW Type



# Approximate time for Valve / O-ring replacement

*Test results by us



# A Caution

*Hot water continuous flow test by a mold temperation controller Valve: For continuous use of 3000 hours at 160°C / 1000 hours at 180°C O-ring: For continuous use of 2000 hours at 160°C / 700 hours at 180°C

Although we have confirmed that there is no leakage, it is our experimental value and not a guaranteed value. Please consider above hours just as a guide. The durability of the seal differs depending on the customers usage conditions. (Number of connection / disconnection, fluid additives, etc.)

Air will be admixed at the time of connection. Please purge the air by the equipment side when using with hot water.
If additives are mixed in water or the piping is filled with steam, the lifetime of the seal will be decreased. When using in such an environment, conduct performance evaluation test by actual product.

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

# **For Medium Pressure**

# **ZEROSPILL CUPLA**





# Unique seal design reduces both liquid spillage and air ingress.

- New valve design offers smooth zero-friction movement.
- Push to connect design.
- The variety of body materials, sizes and end configurations has been standardized to comply with wide range of applications.
- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.



Specifications							
Body material	Bra	el (SUS 304)					
Size (Thread)	1/4", 3/8", 1/2", 3/4", 1"						
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	3.5	36	36	508			
	Seal material	Mark	Working temperature range	Remarks			
Seal material	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia			
Working temperature range	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard materia			
	Ethylene-propylene rubber	EPDM (EPT)	-40°C to +150°C	Standard materia			

Note: Applicable fluids depend on the body material and seal material

Acceptable working temperature range depends on operating conditions

Maximum Tightening Torque					Nn	n {kgf•cm}
Size (Threa	ıd)	1/4"	3/8"	1/2"	3/4"	1"
Torque	Brass	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}
loique	Stainless steel	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}

## Flow Direction

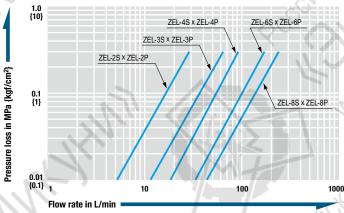
Fluid flow can be bi-directional when socket and plug are connected.



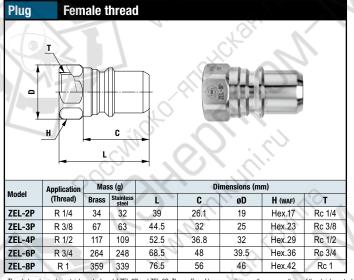
## Interchangeability

Socket and plug of different sizes cannot be connected.

Minimum Cross-Sectional Area					(mm²)
Model	ZEL-2SP	ZEL-3SP	ZEL-4SP	ZEL-6SP	ZEL-8SP
Min. cross-sectional area	31	60.5	86.5	160.6	188.7


Suitability for Vacuum	1.3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}				
Socket only	Plug only	When connected			
-	-	Operational			

Admixture of A	(mL)				
Model	ZEL-2SP	ZEL-3SP	ZEL-4SP	ZEL-6SP	ZEL-8SP
Volume of air admixture	0.16	0.21	0.37	1.12	1.52


Volume of Spillage per Disconnection May vary depending upon the usage conditions.									
Model	ZEL-2SP	ZEL-3SP	ZEL-4SP	ZEL-6SP	ZEL-8SP				
Volume of spillage	0.06	0.12	0.20	0.43	0.55				

# Flow Rate - Pressure Loss Characteristics

[Test conditions] • Fluid : Water • Temperature : 25°C to 27°C



# ZEROSPILL CUPLA



**Models and Dimensions** 



(95.5)

(114.5)

55

65

Hex.42

Hex.50

Rc 3/4

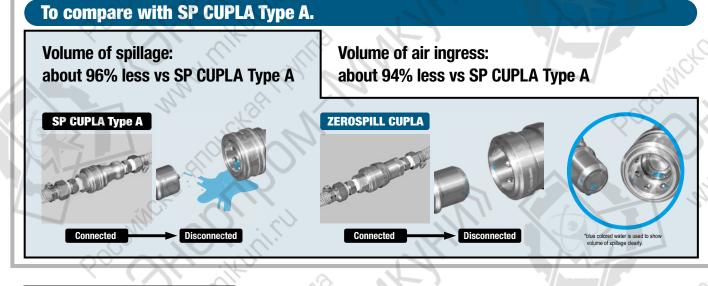
Rc 1

The photos above show stainless steel model ZEL-8P and ZEL-8S. The profiles of brass couplings are the same as those of the stainl

# **Main Features**

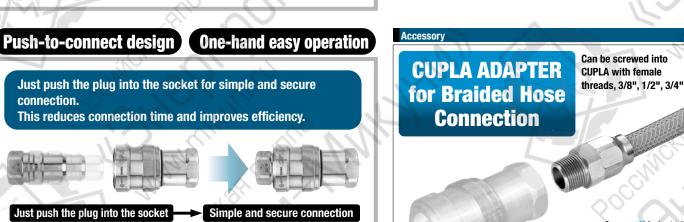
ZEL-6S

ZEL-8S


R 3/4

R 1

829 784


1406 1326

# Unique seal design reduces both liquid spillage and air ingress



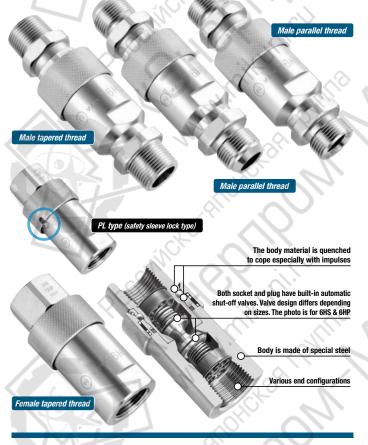
# **Reliable zero friction valve**

New valve design offers smooth zero-friction movement resulting in reduced chance of malfunction caused by deterioration of valve parts.



See page 152 for the detail

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that cor nes with the produc


# **HSP CUPLA**

For hydraulic pressure from 14.0 to 20.6 MPa {142 to 210 kgf/cm²}



# Special steel body is tough against vibration and impact! Male and female thread end configurations are available. Low pressure loss characteristic suits hydraulic equipment applications.

- Quenched special steel body!
- Powerful impact resistance, especially against impulses.
- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.
- In addition to conventional female thread type, male thread types (male tapered thread, male parallel thread with 30° flare, and male parallel thread with 30° cone-seat) are available. Male thread types are designed especially for direct connection to hydraulic power units effectively.
- Male parallel thread type complies with both metal seal and O-ring seal. (In case of O-ring seal, O-rings available in the market can be used.)
- Optional HSP-DC CUPLA series are available for die-casting machine applications with severe pressure variation.
- The overall length of male thread type is shorter than that of female thread type plus conversion nipple available in the market.
- PL type (Safety sleeve lock type) for 2HS to 8HS (except 66HS) with female thread is also available as standard.



Specifications					11:
Body material			Special steel	(Nickel plated)	CN.
Size (Thread)		1/4", 3/8", 1	/2", 3/4", 1"	1 1/4", 1 1/2"	2"
Working pressure	MPa	20	).6	18.0	14.0
	kgf/cm ²	21	10	183	142
working pressure	bar	20	)6	180	140
	PSI	29	90	2610	2030
0		Seal material	Mark	Working temperature range	Remarks
Seal material Working temperature	range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia
		Fluoro rubber	FKM (X-100)	-20°C to +180°C	Available on reques

Maximu	ım Tightening To	orque		Vm {kg	f∙cm}				
Size (Threa	d)	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
	Female thread	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}	290 {2958}	350 {3570}	500 {5100}
Torque	Male taper thread	28 {286}	45 {459}	90 {918}	100 {1020}	-	-	-	370
1	Parallel male thread	25 {255}	35 {357}	60 {612}	120 {1224}	_	-	de la	<u>1.</u>

## Flow Direction

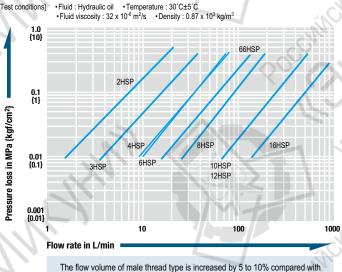
Fluid flow can be bi-directional when socket and plug are connected.



#### Interchangeability

Suitability for Vacuum

4HSP with 6HSP or 10HSP with 12HSP can be connected with each other. Other combinations of different sizes are not connectable.


Minimum Cross-Sectional Area (r											
Model	2HSP	<b>3HSP</b>	4HSP	6HSP	66HSP	8HSP	10HSP	12HSP	16HSP		
Minimum cross- sectional area	21	37	77	77	145	203	595	595	1084		

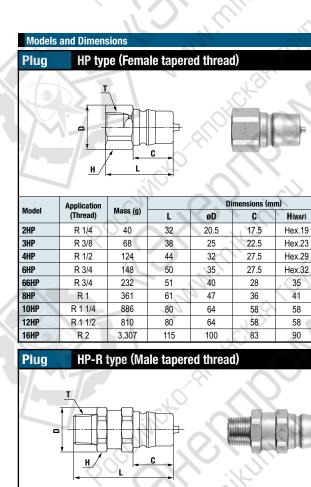
# 1.3 × 10⁻¹ Pa {1 × 10⁻³ mmHg}

Socket only	Plug only	When connected
		Operational
Admixture of Air on Conn	ection May yary depending upon the usa	ne conditions

Admixture	Admixture of Air on Connection May vary depending upon the usage conditions.										
Model	2HSP	<b>3HSP</b>	4HSP	6HSP	66HSP	8HSP	10HSP	12HSP	16HSP		
Volume of air	0.7	1.9	3.5	3.5	8.2	12.4	44	44	156		
volume of air	0.7	1.9	3.5	3.5	8.2	12.4	44	44	1		

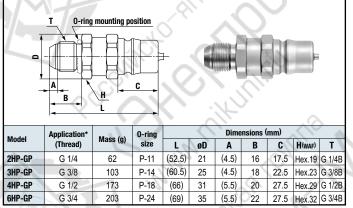
## Flow Rate – Pressure Loss Characteristics



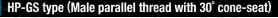

The flow volume of male thread type is increased by 5 to 10% compared with that of female thread type with conversion nipple.

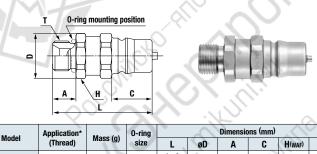
#### ▲ Precautions for use

There is no interchangeability between HSP CUPLA and 210 CUPLA or 280 CUPLA. Do not connect to each other even if sizes are similar.


87 NITTO KOHKI CO., LTD. CUPLA

#### **HSP CUPLA** Product appearance may vary by size. / WAF : WAF stands for width across flats

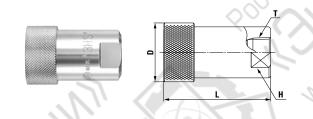




	Application		Dimensions (mm)						
Model	(Thread)	Mass (g)	⊨ L	øD	C	H(WAF)	I		
2HP-R	Rc 1/4	60	(49)	21	17.5	Hex.19	R 1/4		
3HP-R	Rc 3/8	102	(55.5)	25	22.5	Hex.23	R 3/8		
4HP-R	Rc 1/2	171	(63)	31	27.5	Hex.29	R 1/2		
6HP-R	Rc 3/4	197	(66)	35	27.5	Hex.32	R 3/4		

#### Plua HP-GP type (Male parallel thread with 30° flare)



# Plug






Model	Application*	Mass (g)	0-ring size	Dimensions (mm)						
woder	(Thread)			Ε.,	øD	Α	C	H(WAF)	T	
2HP-GS	G 1/4	59	P-11	(48)	21	11.5	17.5	Hex.19	G 1/4B	
3HP-GS	G 3/8	99	P-14	(55.5)	25	13	22.5	Hex.23	G 3/8B	
4HP-GS	G 1/2	167	P-18	(60.5)	31	14.5	27.5	Hex.29	G 1/2B	
6HP-GS	G 3/4	191	P-24	(63.5)	35	16.5	27.5	Hex.32	G 3/4B	

*The counterpart of GP type must be the female parallel thread specified in JIS B 8363 with 30° cone-seat or the coupling with O-ring seal The counterpart of GS type must be the female parallel thread JIS B 8363 with 30° flare or the coupling with O-ring seal. Sleeve stopper design is available for models 2HS to 8HS (except 66HS).

#### Socket HS type (Female tapered thread)



ion 1) Mass (g) 134 226	<b>L</b> 49	Dimensi ØD (27.5)	ons (mm) H(WAF)	т
1) 134				Т
	49	(27.5)	40	
226		(_1.0)	19	Rc 1/4
220	60	(33)	23	Rc 3/8
485	(72)	(43)	35	Rc 1/2
460	(72)	(43)	35	Rc 3/4
569	78.5	(47)	35	Rc 3/4
1,042	93	(58)	46	Rc 1
4 2,586	138	87	58	Rc 1 1/4
2 2,510	138	87	58	Rc 1 1/2
7,286	198	123	80	Rc 2
	2 2,510	2 2,510 138	2 2,510 138 87	2 2,510 138 87 58

#### HS-R type (Male tapered thread) Socket

т

Rc 1/4

Rc 3/8

Rc 1/2

Rc 3/4

Rc 3/4

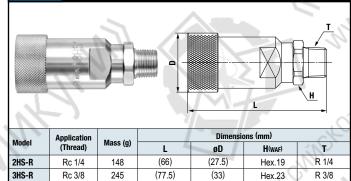
Rc 1

Rc 1 1/4

Rc 1 1/2

Rc 2

4HS-R


6HS-R

Rc 1/2

Rc 3/4

466

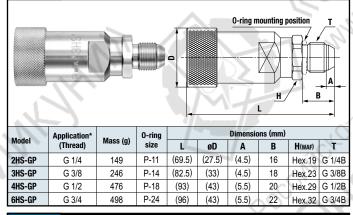
493



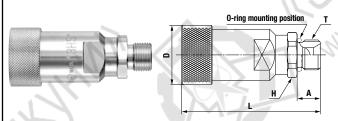
(43)

(43)

Hex.29


Hex.32

R 1/2


R 3/4

#### (93) HS-GP type (Male parallel thread with 30° flare) Socket

(90)



#### HS-GS type (Male parallel thread with 30° cone-seat) Socket



		Application*		0-ring		Dimensions (n			- 10
J	Model	(Thread)	Mass (g)	size	L _	øD	Α	H(WAF)	1
	2HS-GS	G 1/4	146	P-11	(65)	(27.5)	11.5	Hex.19	G 1/4B
N	3HS-GS	G 3/8	242	P-14	(77.5)	(33)	13	Hex.23	G 3/8B
	4HS-GS	G 1/2	469	P-18	(87.5)	(43)	14.5	Hex.29	G 1/2B
	6HS-GS	G 3/4	485	P-24	(90)	(43)	16.5	Hex.32	G 3/4B

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the produ

# **HYPER HSP CUPLA**

Connects hydraulic piping even with residual pressure up to 20.6 MPa {210 kgf/cm²}



# Purge function will set you free from the troublesome residual pressure elimination before connection and let you achieve efficient and frequent hydraulic pipe line coupling.

- Both socket and plug have built-in automatic shut-off valves to prevent fluid spill out when disconnected.
- Interchangeable with standard HSP CUPLA plug or socket in the same size.



		and a second	12			
	Special steel	(Nickel plated)	de			
	1/4", 3/8", 1/2", 3/4", 1"					
MPa	kgf/cm ²	bar	PSI			
20.6	210	206	2990			
Seal material	Mark	Working temperature range	Remarks			
Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia			
	20.6 Seal material	1/4", 3/8",           MPa         kgf/cm²           20.6         210           Seal material         Mark	MPa         kgf/cm²         bar           20.6         210         206           Seal material         Mark         temperature range			

Maximum Tightening Torque Nm {kgf•cm}								
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"			
Torque	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}			

## **Flow Direction**

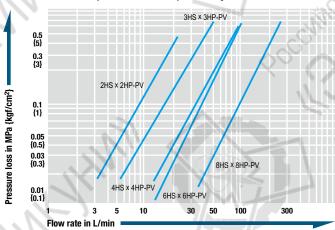
Fluid flow can be bi-directional when socket and plug are connected.



# Interchangeability

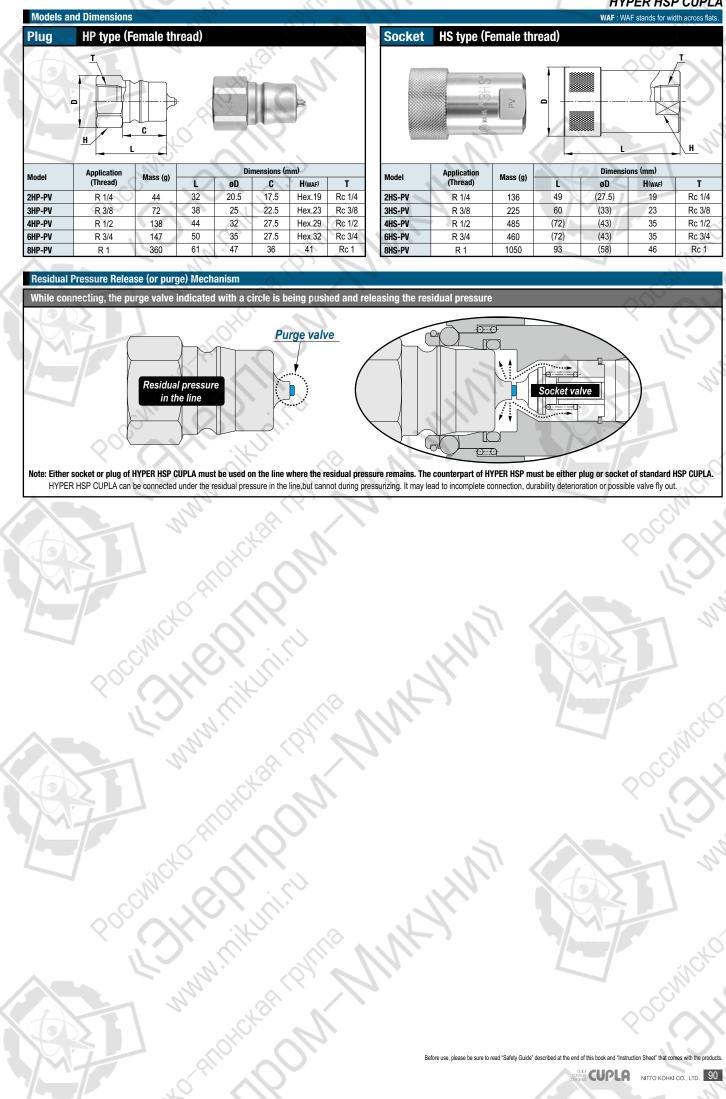
Interchangeable with standard HSP CUPLA plug or socket in the same size. Avoid connecting HYPER HSP CUPLA socket with HYPER HSP CUPLA plug. The residual pressure will not release.

Minimum Cross-Section	nal Area		JOA	> 14	(mm²)
Model	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV
Minimum cross-sectional area	21	37	77	77	203
			11		


Suitability for Vacuum	1.3	3 x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}			
Socket only	Plug only	When connected			
-	_	Operational			

Admixture of Air on Connection May vary depending upon the usage conditions.					
Model	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV
Volume of air	0.7	1.9	3.5	3.5	12.4

Connection Load under Residual Pressure (For reference) (N)							
Residual pressure / Model	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV		
at 5.0 MPa	50	85	85	85	100		
at 10.0 MPa	70	85	85	85	130		
at 15.0 MPa	100	100	100	100	170		


#### Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Hydraulic oil •Temperature : 30 °C±5 °C •Fluid viscosity : 32 x 10⁻⁶ m²/s •Density : 0.87 x 10³ kg/m³



Note: Either socket or plug of HYPER HSP CUPLA must be used on the line where the residual pressure remains. The counterpart of HYPER HSP must be either plug or socket of standard HSP CUPLA.

# **HYPER HSP CUPLA**



NITTO KOHKI CO., LTD. 90 CUPLA



For hydraulic pressure up to 20.6 MPa {210 kgf/cm²}



# Standard hydraulic CUPLA for general purposes with a working pressure up to 20.6 MPa. Low pressure loss, suitable for hydraulic equipment.

- General purpose hydraulic CUPLA with a working pressure of 20.6 MPa {210 kgf/cm²}.
- Structure is designed to reduce pressure loss to the lowest, and is best for hydraulic applications that need big flow rates.
- Both socket and plug have built-in automatic shut-off valves that prevent fluid outflow when disconnected.



Body material		Special steel (Nickel plated)						
Size (Thread)		1/4", 3/8", 1/2", 3/4", 1"						
Pressure unit	MPa	kgf/cm ²	bar	PSI				
Working pressure	20.6	210	206	2990				
Seal material	Seal material	Mark	Working temperature range	Remarks				
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia				
<b>J J J J J J J J J J</b>	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Available on reques				

Maximum rightening to	Nm {kgr•cm}				
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"
Torque	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}

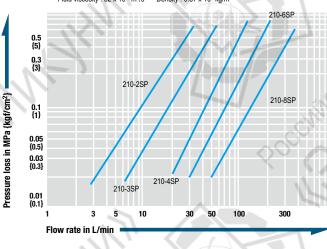
## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.



Interchangeability

Socket and plug of different sizes cannot be connected.


Minimum Cross-Section	nal Area		190	2	(mm²)
Model	210-2SP	210-3SP	210-4SP	210-6SP	210-8SP
Minimum cross-sectional area	24.5	42.8	77.4	146.5	235.6
			1 h.		

Suitability for Vacuum		1.3 Pa {1 X 10 ⁻² mmHg}		
Socket only	Plug only	When connected		
	_	Operational		

Admixture of Air on Connection May vary depending upon the usage conditions.					
Model	210-2SP	210-3SP	210-4SP	210-6SP	210-8SP
Volume of air	0.85	1.02	2.63	8.83	16.04

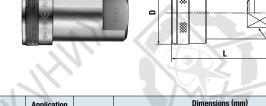
## Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Hydraulic oil •Temperature : 30°C±5°C •Fluid viscosity : 32 x 10° m²/s •Density : 0.87 x 10³ kg/m²



 $\triangle$  Precautions for use

There is no interchangeability between 210 CUPLA and HSP CUPLA or 280 CUPLA. Do not connect each other even if some sizes are approximate.


91 NITTO KOHKI CO., LTD. CUPLA

# **Models and Dimensions**

# Female thread

# Plug

Madal	Model Application			Dimens	Dimensions (mm)		
model	(Thread)	Mass (g)		0	H(WAF)	्र	
210-2P	R 1/4	39	33	18	Hex.19	Rc 1/4	
210-3P	R 3/8	57	36	18.5	Hex.23	Rc 3/8	
210-4P	R 1/2	90	42.5	24	Hex.27	Rc 1/2	
210-6P	R 3/4	195	51	28	Hex.35	Rc 3/4	
210-8P	R 1	293	61	35	Hex.41	Rc 1	
1				1			



Madal	Model Application	Mass (g)	Dimensions (mm)					
Wouer	(Thread)	widss (y)	L	øD	H(WAF)	T,C		
210-2S	R 1/4	158	50.5	(30)	22	Rc 1/4		
210-3S	R 3/8	193	54	(33)	23	Rc 3/8		
210-4S	R 1/2	330	65	(39)	29	Rc 1/2		
210-6S	R 3/4	566	78.5	(48)	35	Rc 3/4		
210-8S	R 1	861	95	(55)	41	Rc 1		
					$\sim$			

# **Application Example**





н



# **HSU CUPLA**

Stainless steel CUPLA for high pressure up to 21.0 MPa {214 kgf/cm²}



# The flow volume is increased by between 14 to 44% while at the same time the coupled length is reduced by at least 10% compared with the S210 CUPLA.

- Body material is excellent corrosion resistant stainless steel (SUS304). Suitable for use in tough / harsh environments such as offshore applications.
- Sleeve stopper mechanism can be engaged by rotating sleeve after connection.
- Despite having a stainless steel body, the working pressure, 21.0 MPa, of HSU CUPLA is comparable to that of special steel body CUPLA such as HSP CUPLA series.
- Both socket and plug have built-in automatic shut-off valves that prevent fluid outflow on disconnection.
- Hydrogenated nitrile rubber (HNBR) is used as a seal material for wide variety of liquids.



Specifications				-		15		
Body material	Stainless steel (SUS304)							
Size (Thread)		1/4", 3/8", 1/2", 3/4", 1"						
Pressure unit	MPa	k	gf/cm ²	bar	20	PSI		
Working pressure	21.0		214	210	1	3050		
Seal material	Seal materia	1	Mark		Working temperature range			
Working temperature range	Hydrogenated nitrile r	Hydrogenated nitrile rubber *		IBR	-20	°C to +120°C		

Maximum Tightening Torque Nm {kgf+c					
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"
Torque	28 {286}	35 {357}	70 {714}	100 {1020}	180 {1836}

# Flow Direction

Fluid flow can be bi-directional when socket and plug are connected.



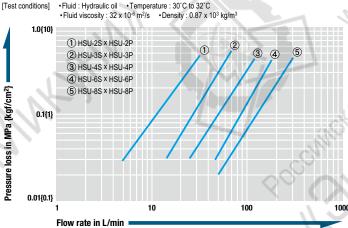
# Interchangeability

Socket and plug of different sizes cannot be connected

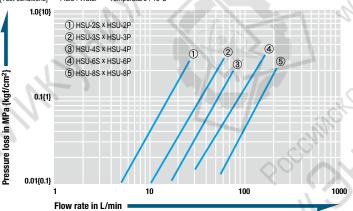
Minimum Cross-Sectional Area					
Model	HSU-2SP	HSU-3SP	HSU-4SP	HSU-6SP	HSU-8SP
Minimum cross-sectional area	27.1	48.2	84.2	143.6	221.2

Plug only

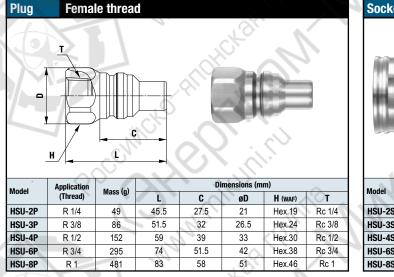
Suitability for Vacuum	
Socket only	

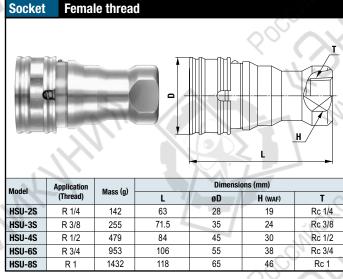

1.3 × 10⁻¹ Pa {1 × 10⁻³ mmHg When connected

	- / / /	Operational
		- 15
۱n	ection May yary depending upon the usage con	(ml)


Model	HSU-2SP	HSU-3SP	HSU-4SP	HSU-6SP	HSU-8SP
Volume of air admixture	0.7	1.5	3.6	6.3	10.9
					S.

Volume of Spinage per Disconnection May vary depending upon the usage conditions.					
Model	HSU-2SP	HSU-3SP	HSU-4SP	HSU-6SP	HSU-8SP
Volume of spillage	0.6	1.7	3.0	6.8	11.2

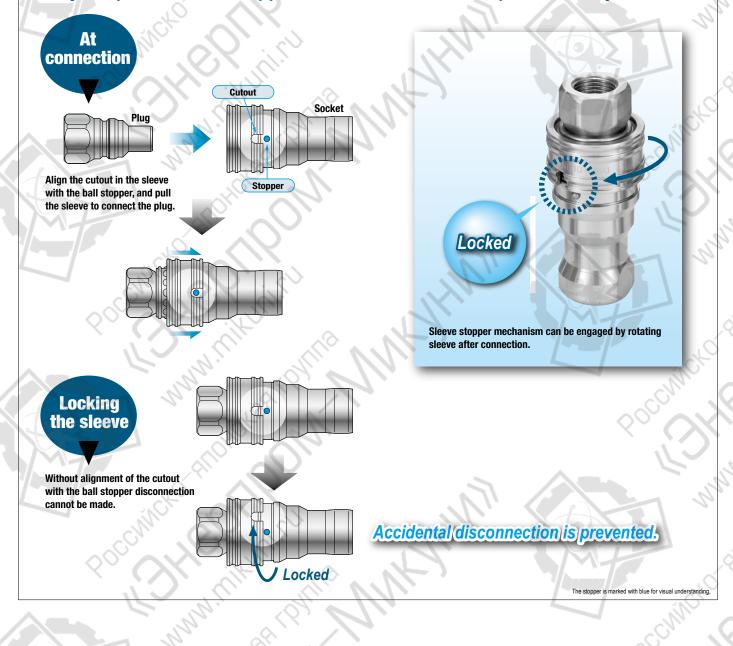

# Flow Rate – Pressure Loss Characteristics (Hydraulic oil / Water)




[Test conditions] •Fluid : Water •Temperature : 18°C



## HSU CUPLA WAF : WAF stands for width across flats.






# Sleeve Stopper Mechanism

Models and Dimensions

# Easy to operate sleeve stopper mechanism enhances operator safety.



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# S210 CUPLA

Stainless steel CUPLA for high pressure up to 20.6 MPa {210 kgf/cm²}



# Stainless steel for excellent corrosion resistance!

# The unique "inner seal mechanism" accepts a working pressure up to 20.6 MPa.

- Body material is excellent corrosion resistant stainless steel (SUS304). Suited for use in tough conditions such as ocean development.
- Although it is made of stainless steel, the unique "inner seal mechanism" enables the working pressure of 20.6 MPa {210 kgf/cm²}, the same as special steel's.
- Safety lock (accidental disconnection prevention mechanism) ensures tight and secured connection under vibration or impacts.
- Both socket and plug have built-in automatic shut-off valves that prevent fluid outflow on disconnection.



Specifications		25			
Body material		Stainless st	eel (SUS304)	all'	
Size (Thread)	1/4", 3/8", 1/2", 3/4", 1"				
Pressure unit	MPa	kgf/cm ²	bar	PSI	
Working pressure	20.6	210	206	2990	
Cool motorial	Seal material	Mark	Working temperature range	Remarks	
Seal material Working temperature range	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard materia	
	Nitrile rubber	NBR (SG)	-20°C to +80°C	Made-to-order item	

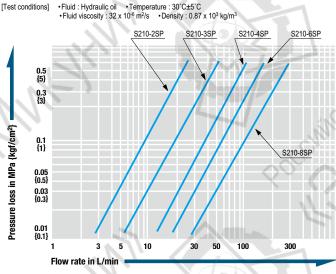
Maximum Tightening To	rque			Nm	{kgf•cm}
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"
Torque	28 {286}	35 {357}	70 {714}	100 {1020}	180 {1836}



Fluid flow can be bi-directional when socket and plug are connected

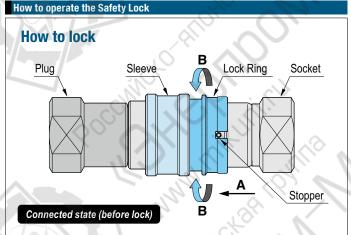


Interchangeability


Socket and plug of different sizes cannot be connected.

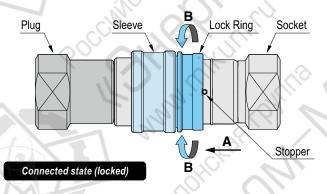
Minimum Cross-Section	nai Area		190		(mm²)
Model	S210-2SP	S210-3SP	S210-4SP	S210-6SP	S210-8SP
Minimum cross-sectional area	24	47	84	153	233

	1.3 Pa {1 × 10 ⁻² mmHg}
Plug only	When connected
_	Operational
	Plug only


Admixture of Air on Connection May vary depending upon the usage conditions.					
Model	S210-2SP	S210-3SP	S210-4SP	S210-6SP	S210-8SP
Volume of air	0.8	1.6	3.2	6.3	14.3

# Flow Rate – Pressure Loss Characteristics




# Models and Dimensions

#### Plug **Female thread** C н Application (Thread) Dimensions (mm) Model Mass (g) Ľ C H(WAF) λī øD S210-2P R 1/4 74 50.5 20 22 19 Rc 1/4 S210-3P R 3/8 127 59 24 28 24 Rc 3/8 S210-4P R 1/2 239 70.5 28 35 30 Rc 1/2 Rc 3/4 S210-6P R 3/4 446 81.5 35.5 44 38 S210-8P 939 100 47.5 58 50 Rc 1 R 1



Slide the Lock Ring in the direction of the arrow A and rotate it in either direction simultaneously. When the Stopper is aligned with the shallow cutout on the Lock Ring, the CUPLA will be locked.





Slide the Lock Ring in the direction of the arrow A and rotate it in either direction simultaneously. When the Stopper is aligned with the deeper cutout on the Lock Ring, the CUPLA will be unlocked.

WWW. Mikuni

S210 CUPLA

Rc 3/4

Rc 1

Н Application (Thread) Dimensions (mm) Model Mass (g) øD H(WAF) L Т S210-2S R 1/4 137 (59) 27 19 Rc 1/4 S210-3S R 3/8 Rc 3/8 226 (68.5) 32 24 S210-4S R 1/2 406 (81) 39.7 30 Rc 1/2

(97.5)

(118)

48

62

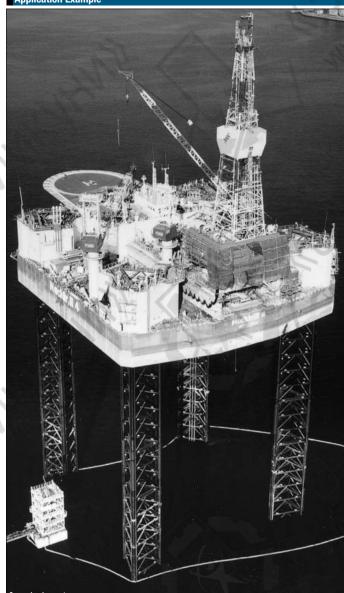
38

50

## **Application Example**

R 3/4

R 1


710

1381

S210-6S

S210-8S

Socket



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# **280 CUPLA**

For hydraulic pressure up to 27.5 to 31.5 MPa {281 to 321 kgf/cm²}



# Generic CUPLA copes with high pressure lines in hydraulic equipment! Low pressure loss is ideal for hydraulic equipment.

- Conforms to international standard ISO 7241-1A.
- General purpose hydraulic CUPLA with the working pressure up to 27.5 to 31.5 MPa {281 to 321 kgf/cm²}.
- Structure keeps pressure loss extremely low, particularly ideal for hydraulic applications requiring high flow rates.
- Both socket and plug have built-in automatic shut-off valves to prevent fluid spill out when disconnected.
- Special steel body material is adopted for its excellent strength and additional quenching treatment is done to withstand hydro pressure impacts.



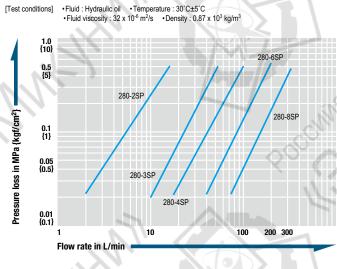
Body material		Special steel (	Bright chromate	conversion coatin	g : silver color)
Size (Thread) 1/4", 3/8"				1/2", 3	8/4", 1"
MF		31.5		27.5	
Working pressure	kgf/cm ²	32	21	281	
working pressure	bar	315		275	
	PSI	45	70	3990	
Seal material		Seal material	Mark	Working temperature range	Remarks
Working temperature	range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia

Maximum Tightening To	orque		Nm {kgf•cm}		
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"
Torque	28 {286}	40 {408}	80 {816}	100 {1020}	180 {1836}
			1		

#### **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.




# Interchangeability

Socket and plug of different sizes cannot be connected. Can be connected with products whose mating part dimensions are in compliance with ISO7241-1A.

Minimum Cross-Section	al Area				(mm²)
Model	280-2SP	280-3SP	280-4SP	280-6SP	280-8SP
Minimum cross-sectional area	11.4	42.8	79.1	146.5	235.6
Suitability for Vacuum			1	.3 Pa {1 × 1	0 ⁻² mmHg}
Socket only		Plug only		When con	nected
-		—		Operatio	onal

Admixture of Air on Connection May vary depending upon the usage conditions.							
Model	280-2SP	280-3SP	280-4SP	280-6SP	280-8SP		
Volume of air	0.37	1.02	2.63	8.83	16.04		

# Flow Rate - Pressure Loss Characteristics



A Precautions for use

There is no interchangeability between 280 CUPLA and HSP CUPLA or 210 CUPLA. Do not connect each other even if some sizes are approximate.

97 NITTO KOHKI CO., LTD. CUPLA

# **Models and Dimensions**

# Plug **Female thread** н

Model	Application	Mass (g)		Di	mensions (mn	n)	$\sim$
Mouer	(Thread)	Widss (y)	L .	øD	C	H(WAF)	ΩT _
280-2P	R 1/4	35	31.5	20.5	15	Hex.19	Rc 1/4
280-3P	R 3/8	59	35	25	18.5	Hex.23	Rc 3/8
280-4P	R 1/2	115	44	32	24.5	Hex.29	Rc 1/2
280-6P	R 3/4	178	52.5	35	28	Hex.32	Rc 3/4
280-8P	R1	331	63.5	44	35	41 🛌	Rc 1

* Internal structural design of 280-6S and 280-8S is partly different from the above drawing.

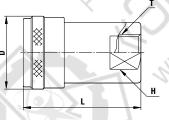
# **Application Example**







NNNN!


, CNINCKO

# 280 CUPLA

WAF : WAF stands for width across flats

Female thread

Socket



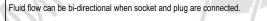
	Model	Application	Mass (g)		Dimensions (mm)						
	Model	(Thread)	ividss (y)	L	øD	H(WAF)	- LÓ				
3	280-2S	R 1/4	110	(46)	(27)	19	Rc 1/4				
	280-3S	R 3/8	185	(53)	(33)	23	Rc 3/8				
	280-4S	R 1/2	335	66.5	(39)	29	Rc 1/2				
	280-6S	R 3/4	571	(81)	(48)	35	Rc 3/4				
	280-8S	R 1	871	98	(55)	41	Rc 1				

# **350 CUPLA**

For hydraulic pressures up to 34.5 MPa {352 kgf/cm²}



# Their "airless valve shut-off design" greatly reduces air admixture! Ideal for hydraulic lines with larger pressure fluctuations.


• Sleeve stopper mechanism can be engaged by rotating sleeve after connection.

• Both socket and plug have built-in automatic shut-off valves to prevent fluid spill out when disconnected.

Specifications			-	205
Body material		Special steel (	Nickel plated)	CVV
Size (Thread)	1	/4", 3/8", 1/2", 3/4	", 1", 1 1/4", 1 1/2	5
Pressure unit	MPa	kgf/cm ²	bar	PSI
Working pressure	34.5	352	345	5000
Seal material	Seal material	Mark	Working temperature range	Remarks
Working temperature range	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard material

Maximum Tightening To	rque		15			Nm {k	gf∙cm}
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1" <	1 1/4"	1 1/2"
Torque	28 {286}	40 {408}	80 {816}	150 {1530}	250 {2550}	500 {5100}	500 {5100}

## **Flow Direction**

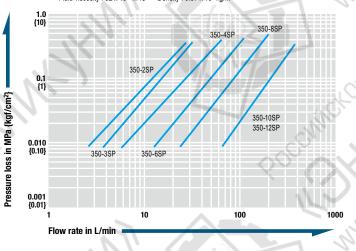




#### Interchangeability

Socket and plug of different sizes cannot be connected. However, 350-2SP with 350-3SP or 350-10SP with 350-12SP can be connected with each other.

Minimum C	ross-Sect	ional Area					(mm²)
Model	350-2SP	350-3SP	350-4SP	350-6SP	350-8SP	350-10SP	350-12SP
Minimum cross- sectional area	34.2	34.2	73.0	149.6	227.0	452.4	452.4


# Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

Admixture of	of Air on C	onnection	May vary depe	nding upon the u	sage conditions.	$\sim 0^{\circ}$	(mL)
Model	350-2SP	350-3SP	350-4SP	350-6SP	350-8SP	350-10SP	350-12SP
Volume of air	0.1	0.1	0.2	0.3	0.5	0.9	0.9

#### Flow Rate - Pressure Loss Characteristics

[Test conditions] •Fluid : Hydraulic oil •Temperature : 40°C±5°C •Fluid viscosity : 32 x 10°6 m²/s •Density : 0.87 x 10° kg/m²



# Body is made of special steel for durability

Seal materials do not protrude into fluid path when connected (touchless packing design) for improved durability

> Both socket and plug have built-in automatic shut-off valves Their "airless valve shut-off design" greatly reduces air admixture

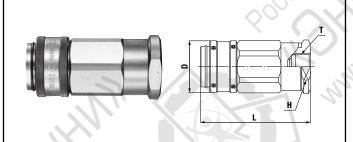
The body material is quenched to cope especially with impulses

Fitted with stopper to prevent disconnection of socket and plug. (Designed to prevent accidental disconnection)

Various end configurations

▲ Precautions for use

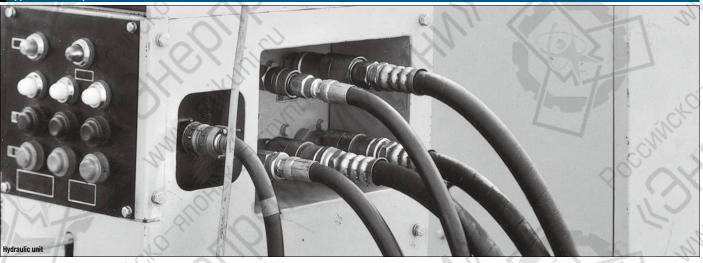
Do not connect / disconnect CUPLA when pressure is applied or remaining.


# **Models and Dimensions**

# Plug Female thread

Madal	Application			Di	mensions (mr	n)	~
Model	(Thread)	Mass (g)		C	øD	H(WAF)	ंा ्
350-2P	R 1/4	170	(72)	36	29	Hex.27	Rc 1/4
350-3P	R 3/8	167	(72)	36	29	Hex.27	Rc 3/8
350-4P	R 1/2	245	85	40.5	30	Hex.27	Rc 1/2
350-6P	R 3/4	415	87	44.5	40	Hex.36	Rc 3/4
350-8P	R1	950	111	57	55	Hex.50	Rc 1
350-10P	R 1 1/4	2,700	(144)	75	78	Hex.70	Rc 1 1/4
350-12P	R 1 1/2	2,600	(144)	75 🔍	78	Hex.70	Rc 1 1/2

Product appearance may vary by size. / WAF : WAF stands for width across flats


350 CUPLA



1						
Model	Application	Mass (g)			Dimensions (mm)	
wouer	(Thread)		L	øD	H(waf)	- LÓ
350-2S	R 1/4	360	(82)	(34)	Hex.30	Rc 1/4
350-3S	R 3/8	353	(82)	(34)	Hex.30	Rc 3/8
350-4S	R 1/2	545	(93.5)	(41)	Hex.36	Rc 1/2
350-6S	R 3/4	976	(105.5)	(49)	46 x ø52	Rc 3/4
350-8S	R 1	1,740	(129)	(63)	55 × ø62	Rc 1
350-10S	R 1 1/4	5,600	(180)	89	Hex.80 × ø90	Rc 1 1/4
350-12S	R 1 1/2	5,500	(180)	89	Hex.80 × ø90	Rc 1 1/2
<ul> <li>G thread is a</li> </ul>	vailable on requ	est.			1	

G thread is available on request.

#### **Application Example**



Socket

Female thread

**Optional Accessory** 

# **PURGE ADAPTER**

**Residual Pressure Purge Adapter for Hydraulic Lines** 

• Can be attached to hydraulic lines to purge residual pressure effectively. See page 153 for the details.

Model	PAD-2	PAD-3FM	PAD-4FM	PAD-6F	M PAD-8FM			
Body material		Ste	el (Nickel pla	ted)				
Application (Thread)	R 1/4	R 3/8 x Rc 3/8	R 1/2 x Rc 1/2	R 3/4 x Rc 3/4	R 1 × Rc 1			
Pressure unit	MPa	MPa kgf/cm² bar		PSI				
Working pressure	35.0	357		350	5080			
Drain outlet port	For 8 mm OD tube	Application:	Rc 1/8 (Max	Tightening	g Torque: 5 Nm)			
Applicable fluids	Hydraulic oil							
Seal material	Seal materia	al Mar	k Working temperature range		Remarks			
Working temperature range	Nitrile rubbe	er NBR (	SG) -5°C	to +80°C	C Standard material			

PAD-FM Pressure PAD-FM Pressure Pad-FM Pressure Pad-FM Pressure Purge residual pressure

PAD-2

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

# FLAT FACE CUPLA F35

For hydraulic pressures up to 35.0 MPa {357 kgf/cm²} with flat contact face



# Flat contact face design reduces spill upon disconnection.

- Flat contact face design makes it easy to clean dust and foreign matter adhered on the surface of coupling so as to prevent them from entering inside and thus causing faulty operation of connection or disconnection.
- Flat contact face design minimizes air admixture during connection to keep the possible malfunction of equipment caused by the air bubbles in the hydraulic line at minimum level.
- Push-to-connect operation.
- Sleeve stopper mechanism is engaged by rotating sleeve after connection. It prevents accidental disconnection even when vibration or impact is applied to the CUPLA.
- The special design reduces pressure loss considerably, and especially suited to hydraulic applications in which big flow is needed. Both socket and plug have built-in automatic shut-off valves that prevent fluid spill out on disconnection.



Body material	Special steel (Nickel plated)						
Size (Thread)		1/4", 3/8",	1/2", 3/4", 1"	5			
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	35.0	357	350	5080			
Seal material	Seal material	Mark	Working temperature range	Remarks			
Working temperature range	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard materia			
<b>J J J J J J J J J J</b>	Nitrile rubber	NBR (SG)	-20°C to +80°C	Made-to-order item			

Maximum Tightening Torque Nm {kgf•cm								
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"			
Torque	28 {286}	40 {408}	80 {816}	150 {1530}	250 {2550}			
			NA.					

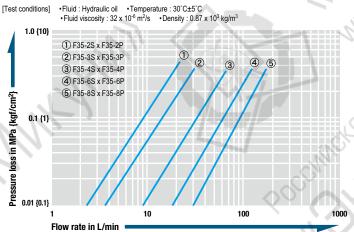
## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.



## Interchangeability

Socket and plug of different sizes cannot be connected.


Minimum Cross-Sectional Area (mm ²										
Model	F35-2SP	F35-3SP	F35-4SP	F35-6SP	F35-8SP					
Minimum cross-sectional area	21.2	32.2	78.5	149.6	227.0					

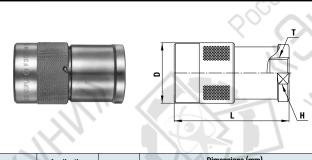
# **Suitability for Vacuum**

Not suitable for vacuum application in either connected or disconnected condition.

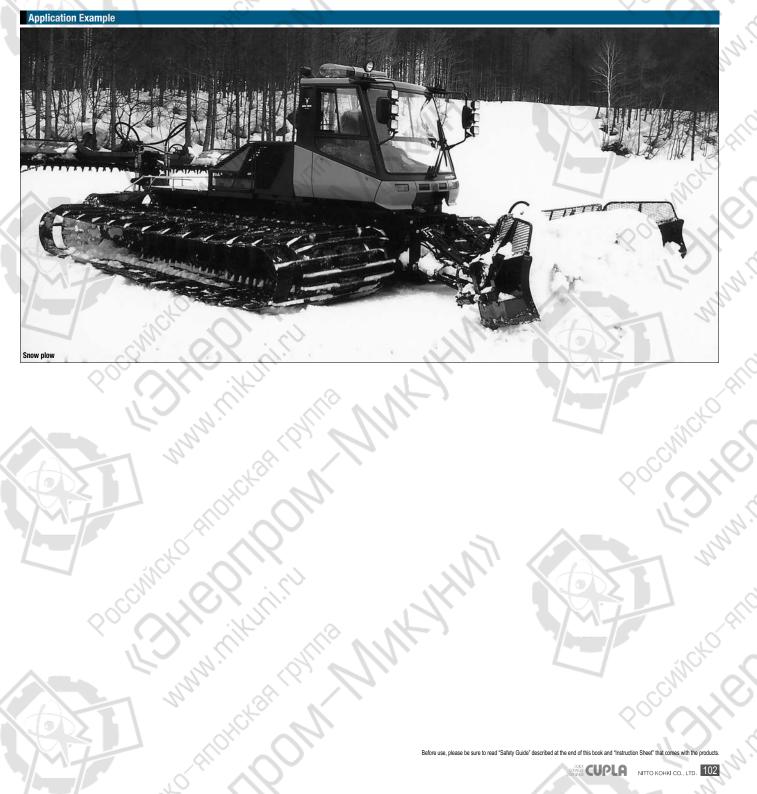
Admixture of Air on Con	nection May	vary depending upo	on the usage conditi	ons.	(mL)	
Model	F35-2SP	F35-3SP	F35-4SP	F35-6SP	F35-8SP	
Volume of air	0.1	0.1	0.2	0.3	0.4	

#### Flow Rate – Pressure Loss Characteristics




#### 🗥 Precautions for use

Do not connect / disconnect CUPLA when pressure is applied or remaining.


#### FLAT FACE CUPLA F35 WAF : WAF stands for width across flats

# Plug **Female thread** C н

	Application		Dimensions (mm)					
Model	(Thread)	Mass (g)	L	C	øD	H(WAF)	T	
F35-2P	R 1/4	106	58	18.8	21.5	19	Rc 1/4	
F35-3P	R 3/8	190	67.5	24	27	24	Rc 3/8	
F35-4P	R 1/2	290	78	28.5	31.7	27	Rc 1/2	
F35-6P	R 3/4	460	84.5	31	40	36	Rc 3/4	
F35-8P	R 1	1000	108	39	50	46	Rc 1	
F33-0F	N I	1000	100	- 39	50	40	RC	



	Mar. 4-1	Application			Dimensi	ons (mm)	
	Model	(Thread)	Mass (g)	L L	øD	H(WAF)	T,
4	F35-2S	R 1/4	182	(57.5)	(28)	26 x ø28.5	Rc 1/4
	F35-3S	R 3/8	320	(70)	(34)	30	Rc 3/8
	F35-4S	R 1/2	490	(78)	(41)	36	Rc 1/2
	F35-6S	R 3/4	815	(85)	(49)	46 × ø50	Rc 3/4
	F35-8S	R1	1520	(104)	(63)	55	Rc 1



Socket

Female thread

OCCIMICKO ATT

# FLAT FACE CUPLA FF

For hydraulic pressure up to 35.0 MPa {357  $kgf/cm^2$ } with flat contact face



# Compared with Nitto Kohki's conventional 35 MPa CUPLA, the flow volume is increased 1.5 to 2 times.

*Increase ratio of each flow volume depends on the CUPLA size.

- "Airless valve shut-off" design minimizes spillage volume on disconnection and admixture volume of air on connection.
- Best suited for hydraulic lines with drastic high pressure pulsation such as in die-casting machines.
- Sleeve stopper design preventing accidental disconnection under vibration or impacts enhances workability and safety.
- Sizes are Rc 3/8, Rc 1/2, Rc 3/4, and Rc 1. *Only the same size of socket and plug can be connected.



Maximum Tighteni		Vm {kgf∙cm}		
Size (Thread)	3/8"	1/2"	3/4"	1"
Torque	40 {408}	80 {816}	150 {1530}	250 {2550}

## **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected

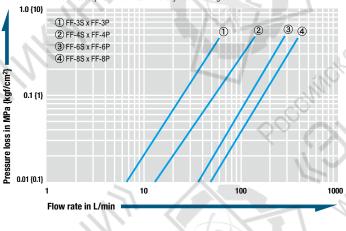


## Interchangeability

Socket and plug of different sizes cannot be connected.

Minimum Cross-Sectional Area (n								
Model	FF-3S × FF-3P	FF-4S × FF-4P	FF-6S × FF-6P	FF-8S × FF-8P				
Minimum cross-sectional area	51	106	215	332				

#### Suitability for Vacuum


Not suitable for vacuum application in either connected or disconnected condition.

Admixture of Air on Connection May vary depending upon the usage conditions.						
Model	FF-3S x FF-3P	FF-4S x FF-4P	FF-6S x FF-6P	FF-8S x FF-8P		
Volume of air admixture	0.018	0.029	0.033	0.080		

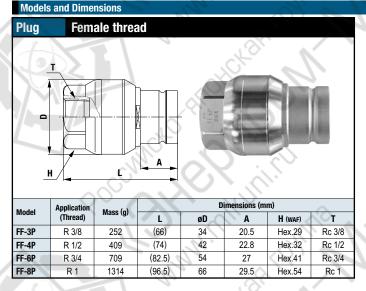
Volume of Spillage per Disconnection May vary depending upon the usage conditions.								
Model	FF-3S × FF-3P	FF-4S × FF-4P	FF-6S × FF-6P	FF-8S × FF-8P				
Volume of spillage	0.009	0.023	0.031	0.110				

## Flow Rate – Pressure Loss Characteristics

[Test conditions] 
 •Fluid : Hydraulic oil •Temperature : 30 C±5 C •Fluid viscosity : 32 x 10⁻⁶ m²/s •Density : 0.87 x 10³ kg/m³

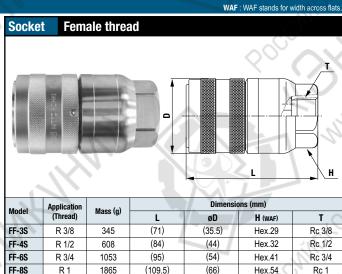


Offset concave flat face enables quick and smooth connection


Unique flat face design Concaved offset for the flat face on socket guides plug for quick and smooth centering and connection, but still easy to wipe off dirt and dusts.

Hexagon nut for easy mount

#### 🗥 Precautions for use


Do not connect / disconnect CUPLA when pressure is applied or remaining.

# FLAT FACE CUPLA FF



MNNN.E

VA-ANDHOKAA PHILA



#### Applications

- Hydraulic piping for die-casting machines
- Casting machines
- Electric furnaces
- Molding presses
- Forging press
- Powdery alloy presses
- Extrusion molding machines
- Machine tools
- Iron manufacturing blast furnaces
- Continuous casting machines
- Rolling mills
- Pipe forging machines
- Furnace opening / closing machines
- Glass molding machines, etc.

Built-in automatic shut-off valve Sleeve stopper design

Unique flat face design

J.

N

Built-in automatic shut-off valve

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

CHINCH

# (HUPI **450B**

For hydraulic pressure up to 44.1 MPa {450 kgf



# Metal-touch valve system with superior durability! Sleeve sto mechanism gives secure conn

- CUPLA for higher working pressure up to 44.1 MPa {450 kgf/
- Sleeve stopper mechanism can be engaged by rotating sleeve

· Both socket and plug have metal-touch automatic shut-off fluid spill out on disconnection.

ssure	Specifications		-	-	21:		
55015	Body material		Special steel	(Nickel plated)	Nr.		
	Size (Thread)		-	8/8"	ČŽ.		
J.S. K	Pressure unit	MPa	kgf/cm ²	bar	PSI		
JPLA	Working pressure	44.1	450	441	6400		
	Seal material	Seal material	Mark	Working temperature range	Remarks		
	Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard material		
Pa {450 kgf/cm²}		Fluoro rubber	FKM (X-100)	-20°C to +180°C	Made-to-order item		
and the	Stand-alone leakage rate on either socket or plug	11	0.1 mL/min at 0	3 MPa {3 kgf/cm ² }			
	Maximum Tightening 1	orque			Nm {kgf•cm}		
	Torque		40	{408}			
			+0	[+00]			
	Flow Direction						
em with	Fluid flow can be bi-directiona	I when socket and	plug are connec	ted.	2.0		
$\mathcal{N} \to \mathcal{O} \to \mathcal{O}$					a.		
eve stopper					~GV		
re connection			00				
re connection.			Liz C		▼ ( )		
			2				
I MPa {450 kgf/cm²}.					11.		
rotating sleeve after connection.							
natic shut-off valves that preven	t <b>E</b> wissian and				( )		
	Minimum Cross-Sectional Area (mm ² )						
	Minimum cross-sectional area			37			
	Suitability for Vacuum			1.3 Pa {1 >	x 10 ⁻² mmHg}		
	Socket only	Plu	ug only	When c	connected		
Coot	Socket only	Plu	ug only —		connected rational		
500				Oper	rational		
	Socket only			Oper			
			depending upon the us	Oper	rational		
	Admixture of Air on Co		depending upon the us	Oper sage conditions.	rational		
	Admixture of Air on Co	nnection May vary	depending upon the us	Oper sage conditions.	rational		
Hydraulic unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
Hydraulic unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli	nnection May vary	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
Hydraulic unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli •Fluid viscosity	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli •Fluid viscosity	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
Hydraulie unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I [Test conditions] •Fluid : Hydrauli •Fluid viscosity	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
Hydraulic unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I (Test conditions) •Fluid : Hydrauli •Fluid viscosity 1.0 {10}	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C	Oper sege conditions. .43	rational		
Variable         Variable	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
type	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
type         type <t< td=""><td>Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1</td><td>nnection May vary .oss Characteri c oil •Temperature</td><td>depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10³ k</td><td>Oper sege conditions. .43</td><td>rational</td></t<>	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
Hydraulic unit	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co         Volume of air admixture         Flow Rate – Pressure I         [Test conditions]       •Fluid : Hydrauli         •Fluid viscosity         1.0         (10)         0.1         0.1	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
With the second seco	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I (Test conditions) • Fluid : Hydraul • Fluid viscosity 1.0 (10) 0.1 (1) 0.1 (1) 0.01 (0.1) 0.01 (0.1)	nnection May vary .oss Characteri c oil •Temperature	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		
Hydraulie unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I (Test conditions) •Fluid : Hydrauli •Fluid viscosity 1.0 {10} {10} {10} {10} {10} {10} {10} {10	nnection May vary .oss Characteri c oil •Temperature	depending upon the used of the use of the us	Oper sege conditions. .43	rational (mL)		
Hydraulic unit	Admixture of Air on Co Volume of air admixture Flow Rate – Pressure I (Test conditions) • Fluid : Hydraul • Fluid viscosity 1.0 (10) 0.1 (1) 0.1 (1) 0.01 (0.1) 0.01 (0.1)	nnection May vary	depending upon the us 1 stics : 25°C±5°C ansity : 0.87 x 10 ³ k	Oper sege conditions. .43	rational		

Models	and Dimens	sions	1.0	T 1			
Plug	Femal	e thread					
		L				 }	ALLO A
	Application	Marca (a)		Di Di	mensions (m	m)	_
Model	(Thread)	Mass (g)	L	C	øD	H(WAF)	Т
450B-3P	R 3/8	95	37.5	22.5	28	24	Rc 3/8

#### Socket Female thread

Flow rate in L/min

Dimensions (mm) Application (Thread) Mass (g) Model L øD H(WAF) ſ Rc 3/8 450B-3S 59.5 R 3/8 285 (36) 24

WAF : WAF stands for width across flats

105 NITTO KOHKI CO., LTD. CUPLA DURX

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet mes with the produ-

# **700R CUPLA**

For hydraulic pressure up to 68.6 MPa {700 kgf/cm²}



**Models and Dimensions** 

# High pressure CUPLA for working pressures up to 68.6 MPa.

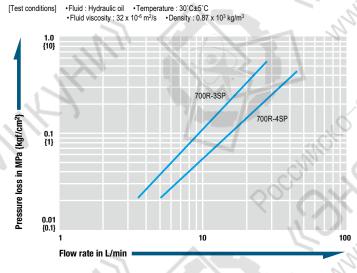
 Metal-touch valves use no rubber seal, and thus ensure excellent durability. Both socket and plug have metal touch automatic shut-off valves that prevent fluid spill out on disconnection.

Body material	Special steel (Nickel plated)						
Size (Thread)	3/8", 1/2"						
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	68.6	700	686	9950			
	Seal material	Mark	Working temperature range	Remarks			
Seal material Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +80°C	Standard materia			
working temperature runge	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Made-to-order item			
Stand-alone leakage rate on either socket or plug	For 700R-3SP, 0.05 mL/min at 0.2 MPa {2 kgf/cm ² } For 700R-4SP, 0.5 mL/min at 0.3 MPa {3 kgf/cm ² }						

Maximum Tightening To	rque	Nm {kgf•cm}
Size (Thread)	3/8"	1/2"
Torque	40 {408}	85 {867}

# **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.




# Interchangeability

Socket and plug of different sizes cannot be connected.

		(a)		
Minimum Cross-Sectional	Area	(mm²)		
Model	700R-3SP	700R-4SP		
Minimum cross-sectional area	34	55		
Suitability for Voouum		1 2 Po (1 V 10 ⁻² mmHa)		
Suitability for Vacuum		1.3 Pa {1 × 10 ⁻² mmHg}		
Socket only	Plug only	When connected		
N -	-	Operational		
		- N.		
Admixture of Air on Connec	tion May vary depending upon th	e usage conditions. (mL)		
Model	700R-3SP	700R-4SP		
Volume of air admixture	1.0	2.2		

# Flow Rate - Pressure Loss Characteristics



Plug	Fema	e thread						Socket	Femal	e thread		
<u> </u>	H		C					J.	RADE DOWNER	(-)		
Mardal	Application		1	D	imensions (mi	n)		. Marshall	Application			Dime
Model	(Thread)	Mass (g)	100	C	øD	H(WAF)	Т	Model	(Thread)	Mass (g)	L	øD
700R-3P	R 3/8	210	54	18	(39.5)	24	Rc 3/8	700R-3S	R 3/8	270	(73)	(39.5)
700R-4P	R 1/2	418	70	22	(50)	27	Rc 1/2	700R-4S	R 1/2	562	(91)	(50)

# WAF : WAF stands for width across flats

	Application	Mana (m)		Dimensi	ions (mm)	3
	(Thread)	Mass (g)	L	øD	H(WAF)	T
S	R 3/8	270	(73)	(39.5)	22	Rc 3/8
s	R 1/2	562	(91)	(50)	27	Rc 1/2

Before use, please be sure to read "Safety Guide" described at the his book and "Instruction Sheet" that comes with the product For Multi-Port Connection (Manual)

MULTI CUPLA MAM Type

# Multiple air port system



# Simultaneously connects several ports securely in one operation! Greatly cuts cycle time in multiple ports replacement.

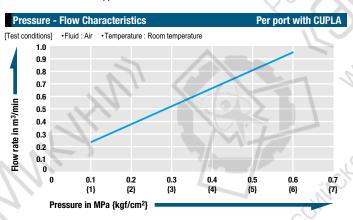
- Handles several ports at once.
- Simple action with lever enables easy connection / disconnection manually.
- Comes with lock mechanism to prevent accidental disconnection.
- Valve on socket side only.

Models and Dimensions

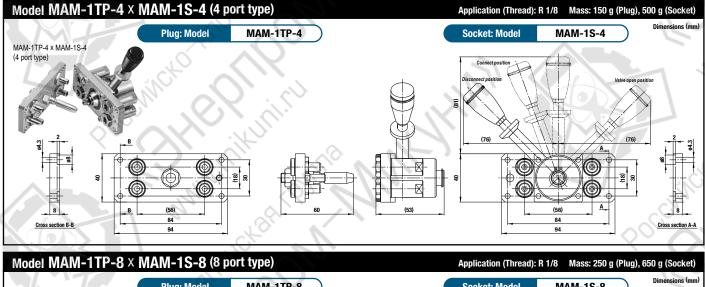
**Specifications** CUPLA : Brass (Chrome plated) Plate : Aluminum alloy (4, 8, 12 ports) / Plate : Steel (16 ports) Locking unit : Steel and others **Body material** Size (Thread) Rc 1/8 Pressure unit MPa kgf/cm² bar PSI 07 Working pressure 7 102 7 Seal material orking ature range Seal material Mark Working temperature range Nitrile rubber NBR (SG) -20°C to +60°C Maximum Tightening Torque Nm {kgf·cm]

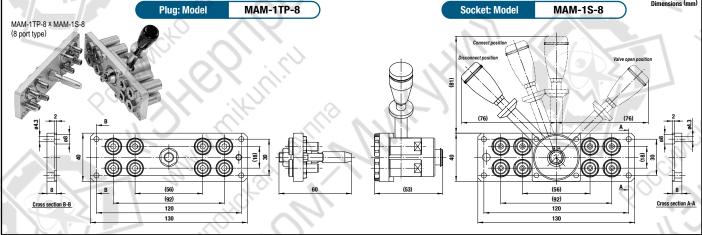
# Interchangeability

Torque

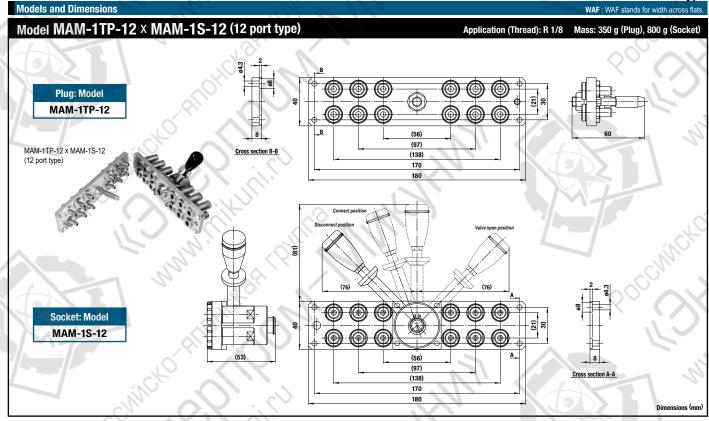

No connection is possible between plates with different number of ports.

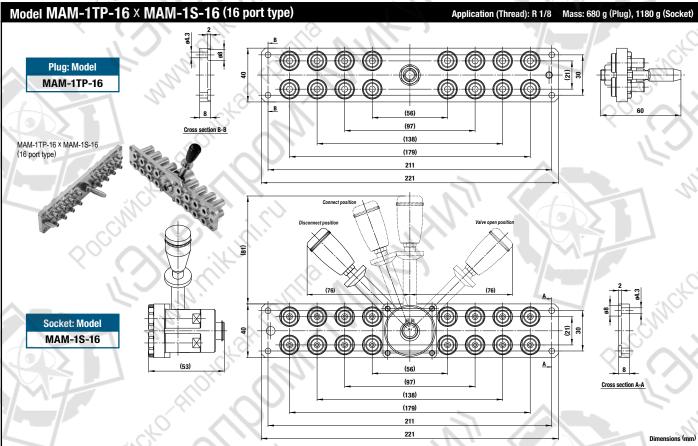
Minimum Cross-Section	nal Area		(mm²)	
Per port		15.9	9is	

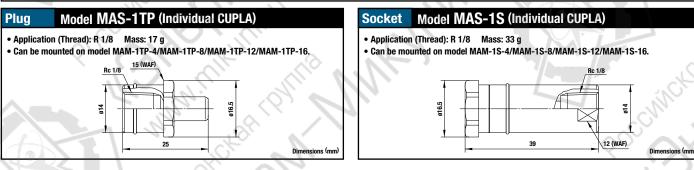

5 {51}


# Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.



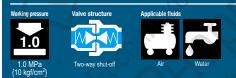


WAF : WAF stands for width across flats.






#### MULTI CUPLA MAM Type








For Multi-Port Connection (Manual)

# MAM-B Type

#### **Multiple port system**



# Simultaneously connects several ports securely in one operation. Greatly reduces changeover time in multiple ports replacement.

- Handles several ports at once.
- Simple manual lever action completes easy connection / disconnection.
- Two-stage lever operation prevents CUPLA from accidental dropping due to sudden detachment.
- Comes with lock mechanism to prevent accidental disconnection.
- Large flow equivalent to that of SP CUPLA Type A.
- Two kinds of plates are available for each size.
- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.
- Self-aligned valve design provides safety sealing of individual socket or plug when disconnected.



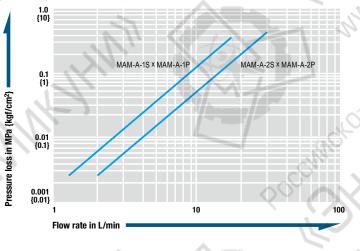
Specificati	ons			~	115
Model	Plug	MAM-B-1P8	MAM-B-1P12	MAM-B-2P6	MAM-B-2P8
woder	Socket	MAM-B-1S8	MAM-B-1S12	MAM-B-2S6	MAM-B-2S8
Number of ports		8	12	6	8
Size (Thread)		1/	8"	1/	4"
Body material		CUPLA: E	Brass (Nickel plat Locking unit: Ste	ed) Plate: Alum eel (Nickel plated)	inum alloy
-		MPa			num alloy PSI
Pressure unit	ure		Locking unit: Ste	eel (Nickel plated)	C
Body material Pressure unit Working press Ambient tempe		МРа	Locking unit: Ste kgf/cm ² 10	eel (Nickel plated) bar	PSI
Pressure unit Working press		МРа	Locking unit: Ste kgf/cm ² 10	eel (Nickel plated) bar 10	PSI

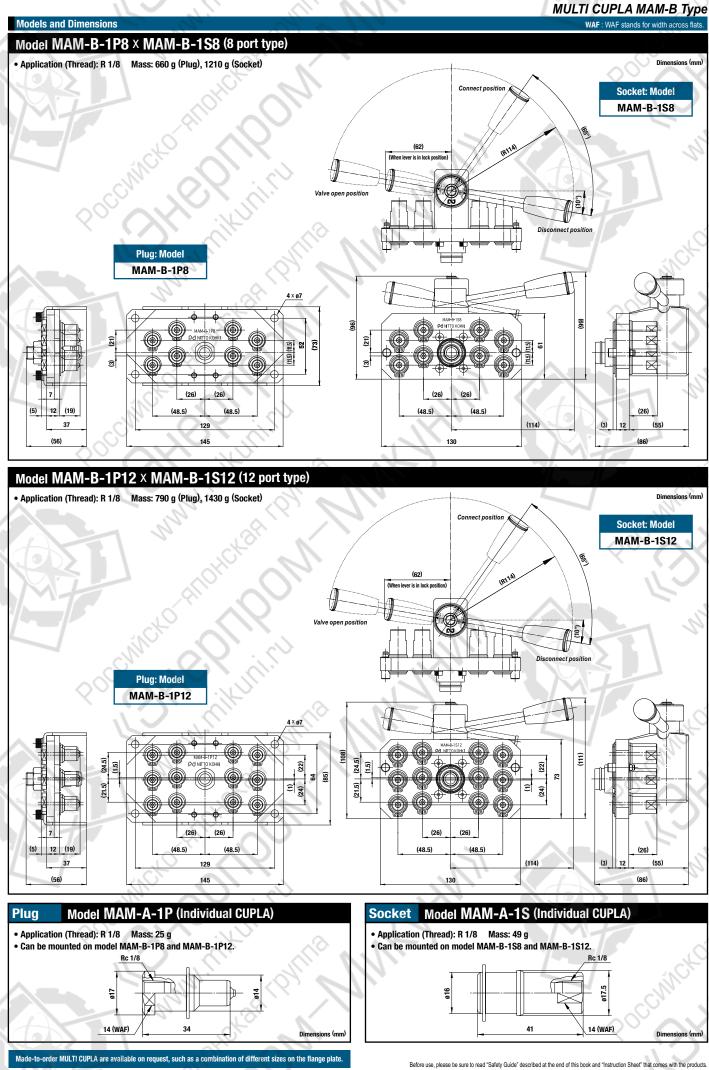
Maximum Tightening Torque			Nm {kgf•cm}
Size (Thread)	1/8"	/	1/4"
Torque	5 {51}		9 {92}

#### Interchangeability

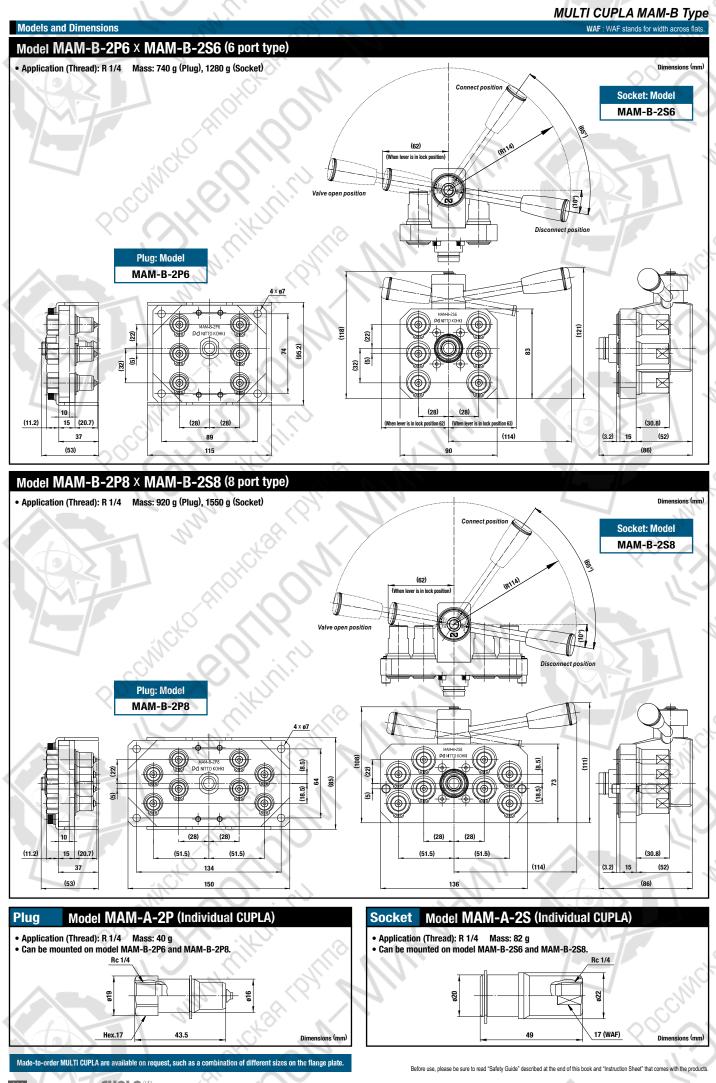
No connection is possible between plates with different number of ports or different size

Minimum Cross-Section	Minimum Cross-Sectional Area per Port			
Model	1SP type	2SP type		
Minimum cross-sectional area	14	26		


Suitability for Vacuum		3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}
Socket only	Plug only	When connected
	-	Operational


Admixture of Air on Connection per Port May vary depending upon the usage conditions.				
Model	1SP type	2SP type		
Volume of air	0.6	1.1	- 2	
			Nr.	
Volume of Spillage on Di	sconnection per Port May vary dependir	ig upon the usage conditions.	(mL)	
Model	1SP type	2SP type	1	

For any vary depending upon the usage conditions.				
Model	1SP type	2SP type		
Volume of spillage	0.4	0.8		


Per port of CUP

Flow Rate - Pressure Loss Characteristics [Test conditions] •Fluid : Water •Temperature : 25°C±5°C





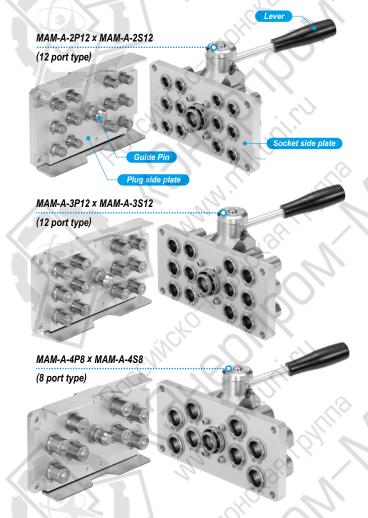
CUPLA NITTO KOHKI CO., LTD. 110



111 NITTO KOHKI CO., LTD. CUPLA CUPA



For Multi-Port Connection (Manual)


# MULTI CUPLA MAM-A Type

#### **Multiple port system**



# Simultaneously connects several ports securely in one operation! Greatly reduces changeover time in multiple ports replacement.

- Handles several ports at once.
- Simple manual lever action completes easy connection / disconnection.
- Two-stage lever operation prevents CUPLA from accidental dropping due to sudden detachment.
- Comes with lock mechanism to prevent accidental disconnection.
- Large flow equivalent to that of SP CUPLA Type A.
- Two kinds of plates are available for each size.
- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.
- Self-aligned valve design provides safety sealing of individual socket or plug when disconnected.

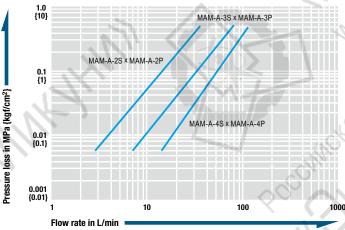


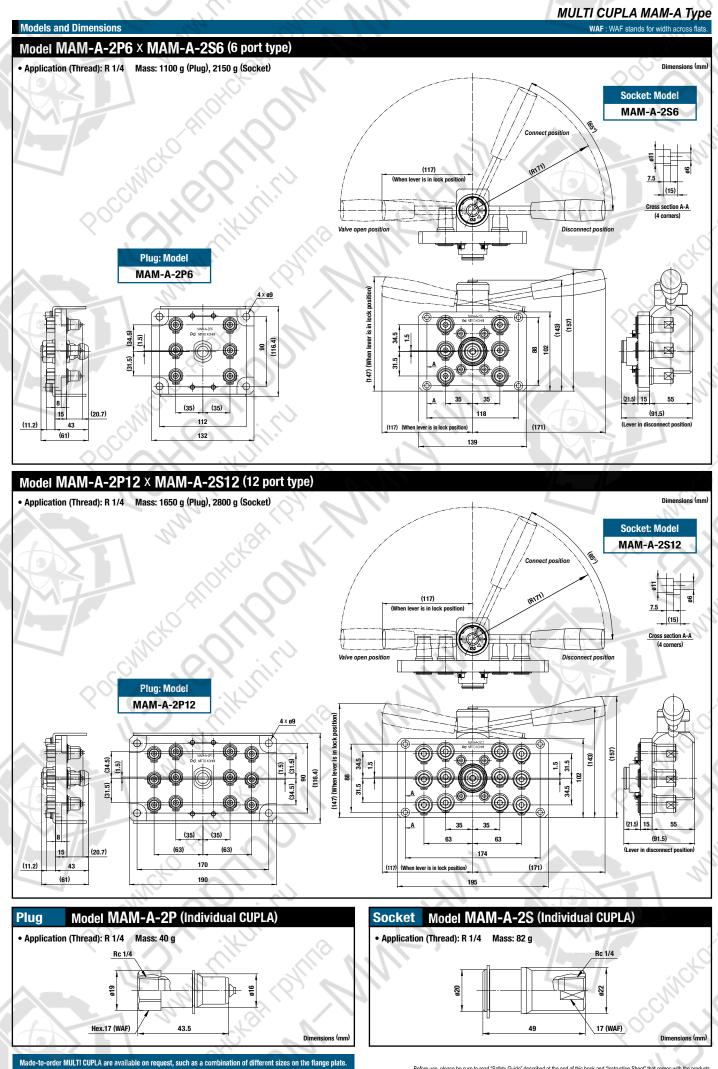
	÷							~
Specifica	ntions				-			15
Model	Plug	MAM-A-2P6	MAM-A-2P12	MAM-A-3P6	MAM-A-3P12	MAM-A	A-4P4	MAM-A-4P
woder	Socket	MAM-A-2S6	MAM-A-2S12	MAM-A-3S6	MAM-A-3S12	MAM-A	A-4S4	MAM-A-4S
Number of po	orts	6	12	6	12	54	D.	8
Size (Thread)		1/	4"	3	/8"	<	1/2"	
Body materia	al	CUPLA: Brass (Nickel plated) Plate: Aluminu Locking unit: Steel (Nickel plated)				inum a	alloy	
Pressure unit		MPa		kgf/cm ²	bar			PSI
Working pressure		1.0		10			-	145
Ambient tem	perature range	ige 0°C to +60°C						
Seal material		Sealing ma	terial	Mark	Working temperature	g range	R	emarks
Working tem	perature range	Fluoro rut	ber FK	M (X-100)	-20°C to +1	80°C	Stand	ard materia

Maximum Tightening To	Nm {kgf•cm}		
Size (Thread)	1/4"	3/8"	1/2"
Torque	9 {92}	12 {122}	30 {306}

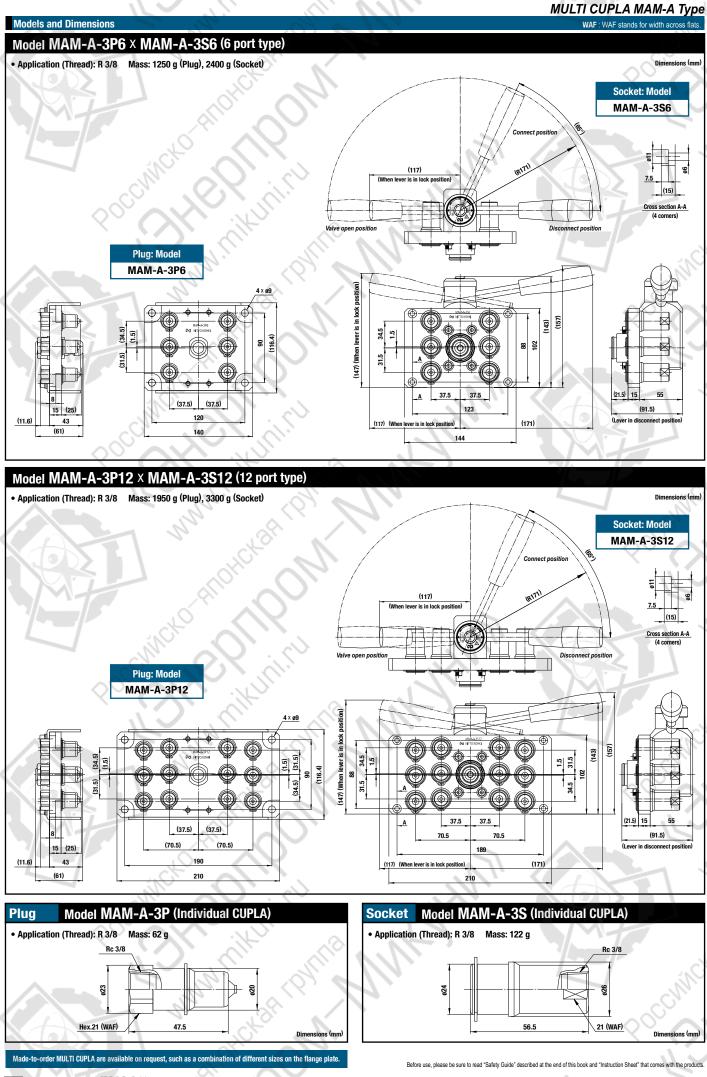
#### Interchangeability

No connection is possible between plates with different number of ports or different size

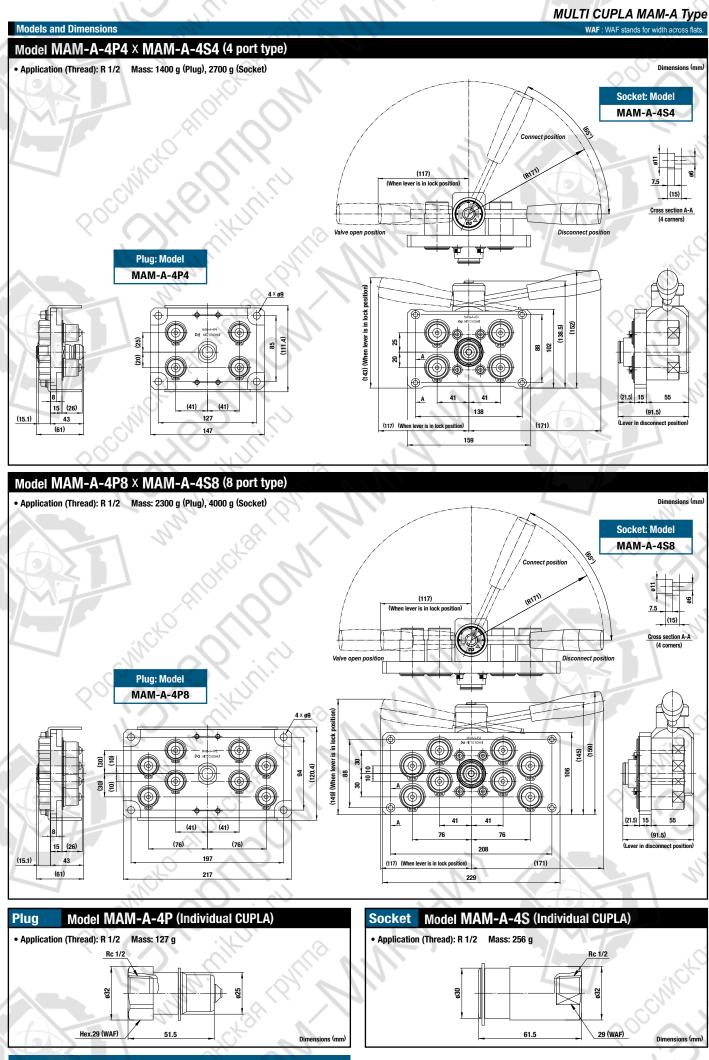

Minimum Cross-Sectional Area per Port (mm ²					
Model	2SP type	3SP type	4SP type		
Minimum cross-sectional area	26	51	73		


Suitability for Vacuum	1.3	1.3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg			
Socket only	Plug only	When connected			
	-	Operational			

Admixture of Air on Co	nnection per Port May vary of	lepending upon the usage conditions.	(mL)
Model	2SP type	3SP type	4SP type
Volume of air	1.1	2.7	3.9
Volume of Spillage on	Disconnection per Port	lay vary depending upon the usage o	onditions. (mL)
Model	2SP type	3SP type	4SP type
	0.8	2.1	3.4




Per port of CUPLA

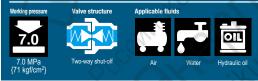





Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product



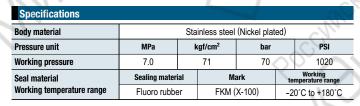
115 NITTO KOHKI CO., LTD. CUPLA COMPLET




Made-to-order MULTI CUPLA are available on request, such as a combination of different sizes on the flange plate.

### **For Multi-Port Connection (Automatic)**

# MAS Type / MAT Type


#### 7.0 MPa {71 kgf/cm²} general purpose type



# Connects multiple lines simultaneously with a single operation for different fluids and sizes.

- Ideal for automated hydraulic or pneumatic cylinder operated systems that need to connect and disconnect several lines simultaneously.
- Automatic shut-off valves in both sockets and plugs ensure no outflow of fluid on disconnection.
- Body materials other than stainless steel are available, which can be ordered with or without valves (made-to-order products).
- Snap ring and screw thread-in types to mount on the base plate are standardized.
- MAS type can accept axial eccentricity between socket and plug. The allowance of eccentricity is within the radius range of 0.3 mm.
- * CUPLA connection or disconnection with fluid under dynamic pressure cannot be made.

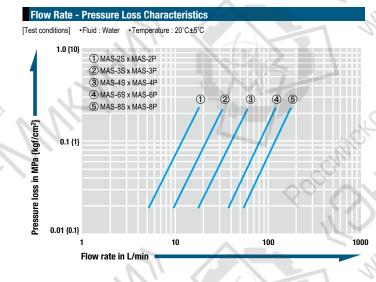
MAS (Snap ring) type

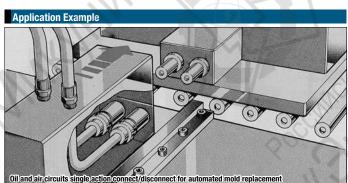


Maximum Tig	phtening Toro			Nm {kgf•cm}	
Size (Thread)	1/4"	3/8"	1/2"	3/4"	1"
Torque (MAS type)	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}
Size (Thread)	M20	M24	M30	M39	M45
Torque (MAT type)	50 {510}	50 {510}	50 {510}	70 {714}	80 {816}

#### Interchangeability

MAS & MAT or MAS & MAS types of the same size are to be connected.
Connection between the same MAT types is virtually not possible because there is no allowance for eccentricity.

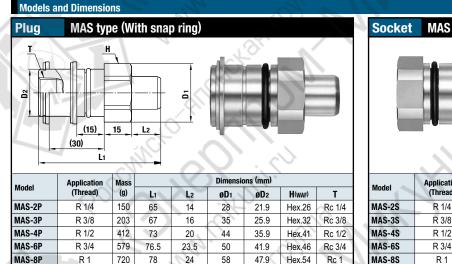

Minimum Cross-Sectional Area									
Model	2SP	3SP	4SP	6SP	8SP				
Min. cross-sectional area	23	41	76	145	224				

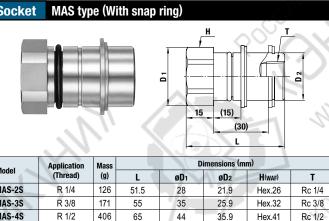

Suitability for Vacuum	<b>A</b>	1.3 x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}
Socket only	Plug only	When connected
		Operational

Admixture of	(mL)				
Model	2SP	3SP	4SP	6SP	8SP
Volume of air	1.1	2.4	3.2	10.5	17.0

Load Required to Maintain Connection When Line Is Pressurized									
Model	2SP	3SP	4SP	6SP	8SP				
Maximum acceptable load N {kgf}	3200 {327}	5200 {531}	9200 {939}	13900 {1419}	20200 {2062}				
Minimum load required to maintain connection N {kgf} *	Px185+45 {px1.85+4.5}	Px310+70 {px3.1+7}	Px545+85 {px5.45+8.5}	Px850+95 {px8.5+9.5}	Px1225+120 {px12.25+12}				

*Assign the actual value of pressure [P (MPa), p (kgf/cm²)] to the above formula to calculate the load. Maintain the connection with the minimum load or more, but not more than the maximum acceptable load.




(Pug) MT (Thread screw mound type (Socket) MT (Thread screw mound) type (Pug) MT (Thread screw mound) type (Pug) MT (Thread screw mound) type (Pug) (Pug

117 NITTO KOHKI CO., LTD. CUPLE CUP



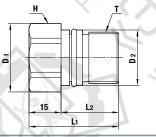




50

58

825 MAT type (Thread screw mount) Socket


604

76

87

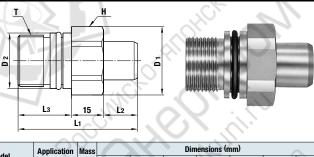


R 1



41.9

47.9


Hex.46

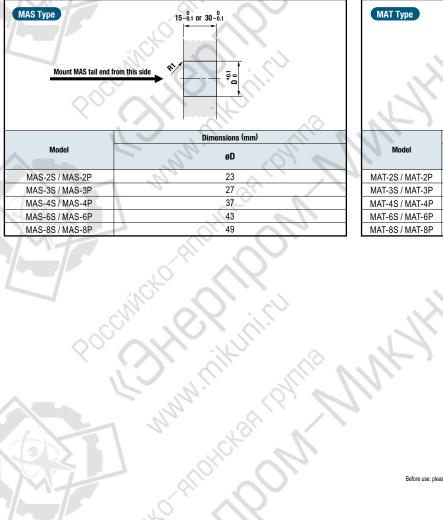
Hex.54

Rc 3/4

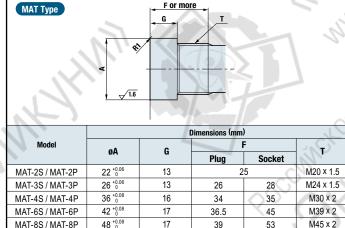
Rc 1

	Application	Mass			Dimensi	ons (mm)		
Model (Thread)	(g)	Lı	L2	øD1	øD2	H(WAF)	Ξī	
MAT-2S		95	39	(24)	28	21.9	Hex.26	M20 x 1.5
MAT-3S		124	42	(27)	32	25.9	Hex.29	M24 x 1.5
MAT-4S	See drawings below.	246	48	(33)	44	35.9	Hex.41	M30 x 2
MAT-6S	bolow.	382	58	(43)	50	41.9	Hex.46	M39 x 2
MAT-8S		506	66	(51)	54	47.9	Hex.50	M45 x 2




MAT type (Thread screw mount)

	Application	Mass		Dimensions (mm)							
Model	(Thread)	(g)	Lı	L2	L3	øD1	ØD2	H(WAF)	⊙т_		
MAT-2P		121	53	14	(24)	28	21.9	Hex.26	M20 x 1.5		
MAT-3P		164	56	16	(25)	32	25.9	Hex.29	M24 x 1.5		
MAT-4P	See drawings below.	332	67	20	(32)	44	35.9	Hex.41	M30 x 2		
MAT-6P	Delow.	453	73	23.5	(34.5)	50	41.9	Hex.46	M39 x 2		
MAT-8P		571	76	24	(37)	54	47.9	Hex.50	M45 x 2		


· MAT type must be coupled with MAS type.

Plug

#### **Dimensions of End Configurations**

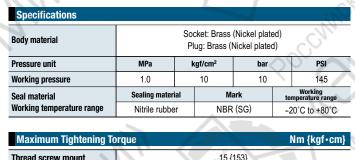


20CCMMCK



### For Multi-Port Connection (Automatic)

# **MULTI CUPLA**


# MALC-01 Type for Low Pressure Use

#### One-way shut-off type for Low pressure use



# Solo use of socket is possible. Suitable for operation of ejector pins to open / close valve gates in molding.

- Solo use of socket is possible.
- As in the case of MULTI CUPLA MALC-SP type and MALC-HSP type, the distance between the socket plate and the plug plate is designed to be 30 mm when connected. This means the MULTI CUPLA MALC-01 type can also be installed mixed with any size of MALC-SP type and MALC-HSP type on the same plate.
- An axial eccentricity allowance of 2 mm eliminates precise centering at installation.
- Compact size with " thread screw mount " and "with flange" types available.



# Maximum Tightening Torque Nm {kgt+cm} Thread screw mount 15 {153} Flange 1.5 {15}

#### Interchangeability

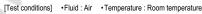
Sockets and plugs can be connected regardless of end configurations.
Not interchangeable with MALC-SP Type (for medium pressure use) MALC-1SP or MALC-HSP Type (for high pressure use) MALC-1HSP.

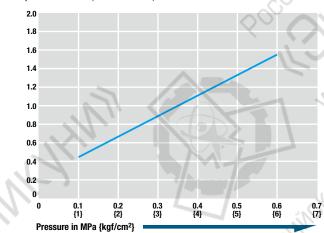
Minimum Cross-Sectional Area		(mm²)
Minimum cross-sectional area	28	G .

#### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

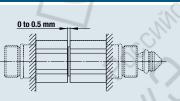
Load Required to Maintain Connection When Line Is Pressurized


#### $F = (P \times 160) + 50 \{ f = p \times 1.6 + 5 \}$


Minimum load required to maintain connection F [N] {f [kgf]} Actual value of pressure P [MPa] {p [kgf/cm²]}

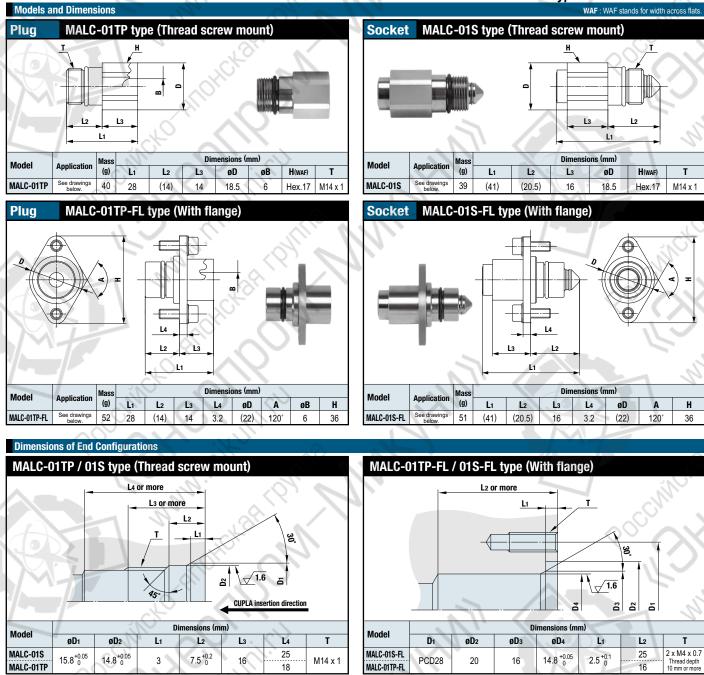
Assign the actual value of pressure [P (MPa), p (kgf /cm²)] to the above formula. Maintain the connection with this load [F (N), f (kgf)] or more. However, the maximum acceptable load is 500 N {51 kgf}.

#### Pressure - Flow Characteristics


rate in m³/min






#### Acceptable distance between plates

Socket and plug or plate must be used in contact with each other. Maximum 0.5 mm distance between socket and plug or plate is acceptable.





#### MULTI CUPLA MALC-01 Type for Low Pressure Use



#### Solo use of socket is possible

MALC-01TP-FL

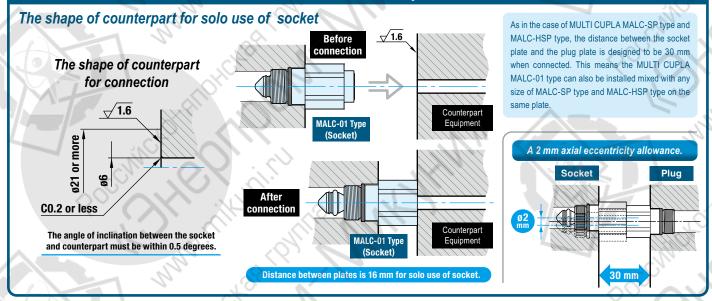
M14 x 1

18

PCD28

20

15.8^{+0.05}


MALC-01TP

14.8^{+0.05}

3

7.5 +0.2

16

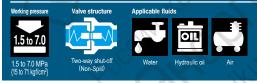


Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

14.8 +0.05

16

2.5 +0.1


16

## For Multi-Port Connection (Automatic)

# **MULTI CUPLA**

## MALC-SP Type for Medium Pressure Use

#### Low spill type for medium pressure use



## A single operation enables simultaneous connections of multiple lines. A special design for medium pressure use minimizes air admixture in fluid lines upon connection.

- Compared with conventional MULTI CUPLA, approximately double flow rates are realized. This could reduce the size of required plates. (Rate of flow increase depends on CUPLA sizes.)
- The MALC type realizes a 2 mm axial eccentricity allowance, while the conventional MULTI CUPLA is only 0.6 mm.
- Special valve design enables connection of socket and plug under pressure of up to 2 MPa. (up to 1.5 MPa for MALC-12SP.)
- When connected, the distance between the socket plate and the plug plate is designed to be 30 mm for all sizes. This means that any size of CUPLA can be mounted and used on the same plate.
- Low spill valves minimize outflow of fluid and admixture of air into the fluid line.

MALC-SP (Thread screw mount) type (Plug) MALC-SP (Thread screw mount) type (Socket) MALC-SP (Flange) type (Plug) MALC-SP (Flange) type (Socket)

Body material			Stainless steel (Socket body: Nickel plated)					
Thread screw mount		ew mount	MALC-1SP	MALC-2 to 8SP	MALC-12SP			
Model	Flange		-	MALC-2 to 8SP-FL	00			
	Snap	ring	-	MALC-8SP-10F	MALC-12SP(-F/-16F			
		MPa	7.0 (2.0)	5.0 (2.0)	1.5 (1.5)			
Working p	roccuro *	kgf/cm ²	71 (20)	51 (20)	15 (15)			
working p	1 633ul 6	bar	70 (20)	50 (20)	15 (15)			
		PSI	1020 (290)	725 (290)	218 (218)			
Seal material Working temperature range			Sealing material	Mark	Working temperature range			
		Fluoro rubber	FKM (X-100)	-20°C to +180°C				

The value in brackets is Maximum working pressure of individual plug or socket.

Maximum Ti	ahtenina	a Torque	$\sim$		Nm {k	qf•cm}		
Model	1SP	2SP	3SP	4SP	6SP	8SP	12SP	12SP-16F
Thread screw mount	20 {204}	30 {306}	35 {357}	45 {460}	60 {612}	75 {765}	80 {816}	-0
Flange	-	7 {71.5}	7 {71.5}	7 {71.5}	7 {71.5}	23 {235}	-	4
Snap ring	-	-	-	-	-	260 {2652}	280 {2856}	350 {3570}

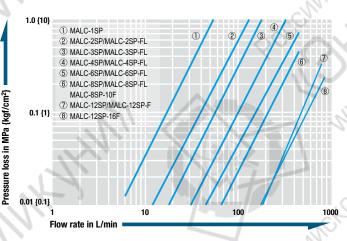
#### Interchangeability

Socket and plug in the same size can be connected regardless of their end configurations

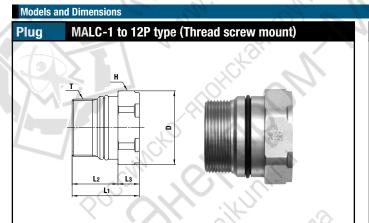
Minimum Cross-Sectional Area (m										
Model	1SP	2SP(-FL)	3SP(-FL)	4SP(-FL)	6SP(-FL)	8SP(-FL/-10F)	12SP(-F/-16F)			
Min. cross-sectional area	26	49.5	87	153	227	347	795			
	<u>.</u>									

#### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.

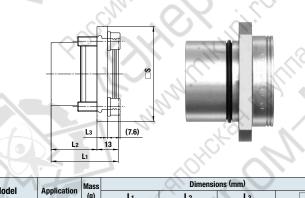

Admixture of Air on Connection May vary depending upon the usage conditions.								
Model	1SP	2SP(-FL)	3SP(-FL)	4SP(-FL)	6SP(-FL)	8SP(-FL/-10F)	12SP(-F/-16F	
Volume of air	0.08	0.14	0.26	0.55	0.95	0.85	1.46	
7.			-				N.	
Volume of S	pillage pe	r Disconn	ection May	vary depending	upon the usage of	conditions.	(mL)	
Volume of S Model	pillage pe 1SP	r Disconn 2SP(-FL)	ection May 3SP(-FL)	vary depending 4SP(-FL)	upon the usage of <b>6SP(-FL)</b>	conditions. 8SP(-FL/-10F)	(mL) 12SP(-F/-16F)	

Load Requir	Load Required to Maintain Connection When Line Is Pressurized									
Model	1SP	2SP(-FL)	3SP(-FL)	4SP(-FL)	6SP(-FL)	8SP(-FL/-10F)	12SP(-F/-16F)			
Maximum acceptable load N {kgf}	2800 {286}	4500 {459}	5600 {571}	10000 {1019}	14000 {1427}	15600 {1591}	8200 {837}			
Minimum load required to maintain connection N {kgf} *	P x 170+85 {p x 1.7+8.5}	P x 345+180 {p x 3.45+18}	P x 460+190 {p x 4.6+19}			P x 1360+310 {p x 13.6+31}				


*Assign the actual value of pressure [P (MPa), p (kgf/cm²)] to the above formula to calculate the load. Maintain the connection with the minimum load or more, but not more than the maximum acceptable load

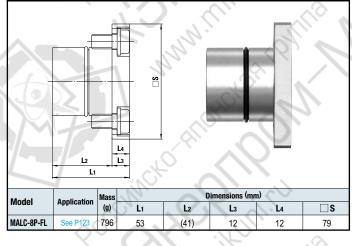
#### Flow Rate - Pressure Loss Characteristics

[Test conditions] •Fluid : Water •Temperature : 19°C to 25°C




MALC-SP (Snap ring) type (Socket)



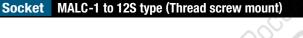

Model	Anniliantian	Mass	Dimensions (mm)							
wouer	Application	(g)	Li -	L2	L3	øD	H(WAF)	Т		
MALC-1P		40	32	(18)	14	21 <	Hex.19	M16 x 1		
MALC-2P		75	33	(20)	13	28	Hex.26	M20 x 1.5		
MALC-3P		95	33	(20)	13	32	Hex.29	M24 x 1.5		
MALC-4P	See P123	248	41	(28)	13	45	Hex.41	M35 x 1.5		
MALC-6P	$\leq$	369	50.5	(37.5)	13	50	Hex.46	M40 x 2		
MALC-8P		399	53	(41)	12	54	Hex.50	M45 x 2		
MALC-12P		724	57	(45)	12	74	Hex.67	M62 x 2		

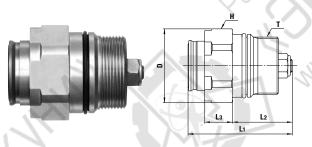
#### Plug MALC-2 to 6P-FL type (With flange)



model	Application	(g)	LI 📈	L2	L3	□ S
MALC-2P-FL		146	30	(17)	6	40
MALC-3P-FL	Can D100	180	- 33	(20)	6	45
MALC-4P-FL	See P123	390	41	(28)	6.5	58
MALC-6P-FL		553	50.5	(37.5)	6.5	64

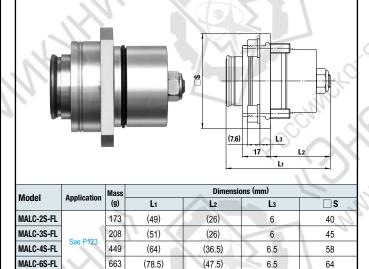
#### Plug MALC-8P-FL type (With flange)



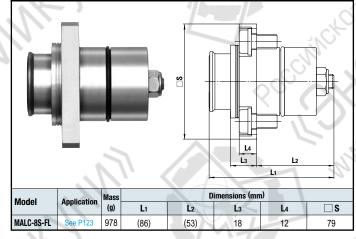


0 to 0.5 m

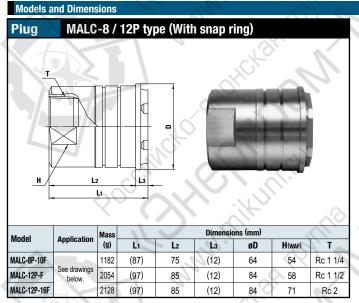
Ź

Acceptable distance between socket and plug Plug and socket must be used in contact with


each other. Maximum 0.5 mm distance between socket and plug is acceptable.

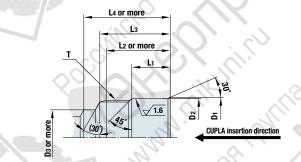






Model	Application	Mass	Dimensions (mm)							
woder	Аррисацоп	(g)	Lı	L2	L3	øD	H(WAF)	5		
MALC-1S		53	(45)	(23)	16	21	Hex.19	M16 x 1		
MALC-2S		95	(49)	(26)	17	28	Hex.26	M20 x 1.5		
MALC-3S		120	(51)	(26)	17	32	Hex.29	M24 x 1.5		
MALC-4S	See P123	306	(64)	(36.5)	17	45	Hex.41	M35 x 1.5		
MALC-6S		471	(78.5)	(47.5)	17	50	Hex.46	M40 x 2		
MALC-8S		590	(86)	(53)	18	54	Hex.50	M45 x 2		
MALC-12S		1176	(98)	(60)	18	74	Hex.67	M62 x 2		

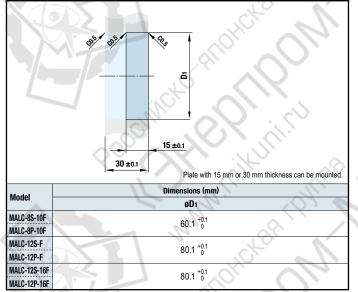
#### Socket MALC-2 to 6S-FL type (With flange)




#### Socket MALC-8S-FL type (With flange)



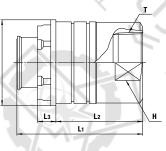



#### Dimensions of End Configurations



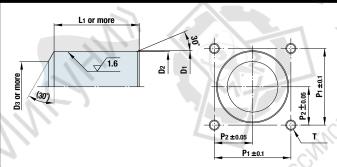


Madal	X			Dimensi	ons (mm)	2 Yr		0
Model	øD1	ØD2	øD3	Lı	L2	L3	L4	Т
MALC-1S	18.3 ^{+0.1}	17.3 ^{+0.06}	13	11	20	22	25	M16 x 1
MALC-1P	10.5 0	17.5 0	15		20	22	25	WITOXT
MALC-2S	24 ^{+0.1}	23+0.06	16	11.5	22	25	28	M20 x 1.5
MALC-2P	24 0	23 0	10		22	23	20	10120 X 1.5
MALC-3S	27.6+0.1	26.6 ^{+0.08}	18	11	22	25	29	M24 x 1.5
MALC-3P	21.0 0	20.0 0	10	0.1		23	23	11/24 × 1.5
MALC-4S	39.5 ^{+0.1}	38.5 ^{+0.08}	26	15.5	30	33	40.5	M35 x 1.5
MALC-4P	00.0 0	00.0 0	S.	10.0	00		+0.0	
MALC-6S	45 ^{+0.1}	44 +0.08	30	20	40	44	51.5	M40 x 2
MALC-6P	-50		50	20	-		51.5	11140 7 2
MALC-8S	48 +0.3	47 ^{+0.08}	35	27	43	47	55	M45 x 2
MALC-8P	40 0	4/0	- 55	21	+3		55	IVI4J X Z
MALC-12S	66 ^{+0.3}	64 ^{+0.1}	45	30	50	54	65	M62 x 2
MALC-12P	00 0	040	40	30	50	54	05	IVIOZ X Z


#### MALC-8 / 12P type (With snap ring)



#### MULTI CUPLA MALC-SP Type for Medium Pressure Use WAF : WAF stands for width across flats.


#### Socket MALC-8 / 12S type (With snap ring)





Model	Application	Mass	Dimensions (mm)						
Mouel		(g)	Lı	L2	L3	øD	H(WAF)	्र	
MALC-8S-10F		1373	(108)	75	(18)	64	54	Rc 1 1/4	
MALC-12S-F	See drawings below.	2505	(123)	85	(18)	84	58	Rc 1 1/2	
MALC-12S-16F		2579	(123)	85	(18)	84	71	Rc 2	

#### MALC-2 to 8SP-FL type (With flange)



Model			Di	mensions (m	m)	$\sim \sim$	
WOUEI	øD1	ØD2	øDз	Lı	<b>P</b> 1	P2	T
MALC-2S-FL	24 ^{+0.1}	23 ^{+0.06}	16	28	28	14	1 1
MALC-2P-FL	24 ₀	° ° 19		20	14		
MALC-3S-FL	27.6 ^{+0.1}	26.6 ^{+0.08}	18	28	31	15.5	
MALC-3P-FL	27.0 0	20.0 0	10	22	31	15.5	4 x M6 Thread depth
MALC-4S-FL	39.5 ^{+0.1}	38.5 ^{+0.08}	26	39	40	20	17 mm or more
MALC-4P-FL	39.3 ₀	30.3 ₀	20	30.5	40	20	1
MALC-6S-FL	45 ^{+0.1}	44 ^{+0.08}	30	50	45	22.5	
MALC-6P-FL	40 ₀	44 0	30	40	43	22.5	
MALC-8S-FL	48 ^{+0.3}	47 ^{+0.08}	35	53	55	27.5	4 x M10 Thread depth
MALC-8P-FL	40 0	4/0	35	43	55	21.5	15 mm or more

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

123 NITTO KOHKI CO., LTD. CUPLA DUCK



## **For Multi-Port Connection (Automatic)**

# **MULTI CUPLA**

## MALC-HSP Type for High Pressure Use

#### Low spill type for high pressure use



## A single operation enables simultaneous connections of multiple lines. A special design minimizes air admixture in fluid lines upon connection. Suitable for high pressure hydraulic circuits.

- · Compared with conventional MULTI CUPLA, approximately double flow rates are realized. This could reduce the size of required plates. (Rate of flow increase depends on CUPLA sizes.)
- The MALC type realizes a 2 mm axial eccentricity allowance, while the conventional MULTI CUPLA is only 0.6 mm.
- Special valve design enables connection of socket and plug under dynamic pressure of up to 8 MPa.
- · When connected, the distance between the socket plate and plug plate is designed to be 30 mm for all sizes. This means any size of CUPLA can be mounted and used on the same plate.
- Low spill valves minimize outflow of fluid and admixture of air into the fluid line.



Body mat	erial		Spe	ecial steel (I	Nickel plat	ed)
Model Thread screw mount Flange		ew mount	MALC-1HSP		MALC-2 to 8HSP	
		ige	-		MALC-2 to 8HSP-FL	
MPa		MPa	25.0 (8.0)			21.0 (8.0)
Working	oressure *	kgf/cm ²	255 (81)			214 (81)
working	Ji 635ui 6	bar	250 (80)			210 (80)
		PSI	3630 (1160)			3050 (1160)
Seal material Working temperature range			Sealing material Ma		rk	Working temperature range
		range			(-100)	-20°C to +180°C

Maximum Ti	Nn	ı {kgf∙cm}				
Model	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP
Thread screw mount	30 {306}	50 {510}	53 {540}	65 {663}	80 {816}	95 {969}
Flange	-		9 {		30 {306}	

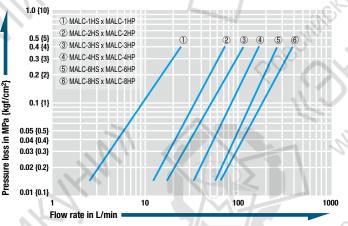
#### Interchangeability

Socket and plug in the same size can be connected regardless of their end configurations

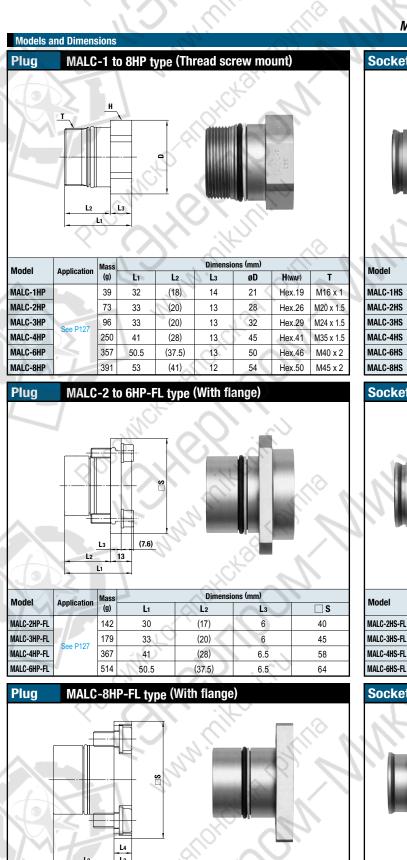
Minimum Cr	oss-Sectio	nal Area			$\overline{\mathcal{X}}$	(mm²)
Model	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP
Min. cross-sectional area	26	49.5	87	153	227	347
		line .				

#### Suitability for Vacuum

Not suitable for vacuum application in either connected or disconnected condition.


Admixture of Air on Connection May vary depending upon the usage conditions.									
Model	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP			
Volume of air	0.08	0.14	0.26	0.55	0.95	0.85			

Volume of Spillage per Disconnection May vary depending upon the usage conditions. (mL)										
Model	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP				
Volume of spillage	0.08	0.14	0.26	0.55	0.95	0.85				
-					~					


Load Required to Maintain Connection When Line Is Pressurized										
Model	1HSP	2HSP	<b>3HSP</b>	4HSP	6HSP	8HSP				
Maximum acceptable load N {kgf}	9300 {948}	16500 {1683}	22000 {2244}	40500 {4130}	55000 {5609}	64500 {6577}				
Minimum load required to maintain connection N {kgf} *		P x 345+180 {p x 3.45+18}								

Assign the actual value of pressure [P (MPa), p (kgf/cm²)] to the above formula to calculate the load. Maintain the connection with the minimum load or more, but not more than the maximum acceptable load.

est conditions] •Fluid : Hydraulic oil •Temperature : 30°C±5°C ·Fluid viscosity : 32 x 10⁻⁶ m²/s •Density : 0.87 x 103



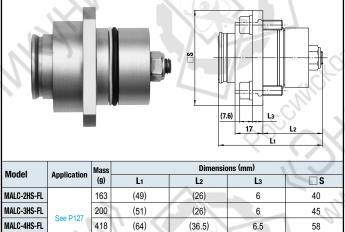
125 NITTO KOHKI CO., LTD. CUPLA



Model	Application	Mass	10	Dimensions (mm)						
MOUCI	Аррисации	(g)	<u>_</u> LL	L2	L3	1	S			
MALC-8HP-FL	See P127	786	53	(41)	12	12	79			

0 to 0.5 mm

Acceptable distance between Socket and Plug


Plug and socket must be used in contact with

each other. Maximum 0.5 mm distance between socket and plug is acceptable.

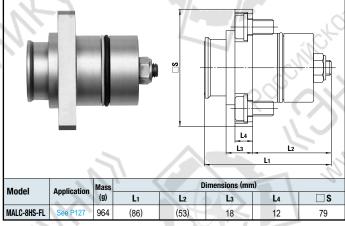


		Mass	Dimensions (mm)						
Model	Application	(g)	Lı	L2	L3	øD	H(WAF) –	(J	
MALC-1HS		51	(45)	(23)	16	21	Hex.19	M16 x 1	
MALC-2HS	1	89	(49)	(26)	17	28	Hex.26	M20 x 1.5	
MALC-3HS	See P127	117	(51)	(26)	17	32	Hex.29	M24 x 1.5	
MALC-4HS	See P127	290	(64)	(36.5)	17	45	Hex.41	M35 x 1.5	
MALC-6HS	1	447	(78.5)	(47.5)	17	50	Hex.46	M40 x 2	
MALC-8HS	1	579	(86)	(53)	18	54	Hex.50	M45 x 2	

#### Socket MALC-2 to 6HS-FL type (With flange)



(47.5)

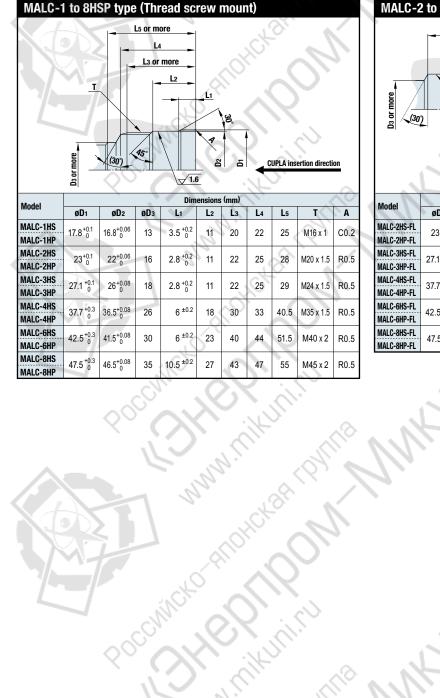

6.5

64

#### Socket MALC-8HS-FL type (With flange)

(78.5)

611




#### 127 NITTO KOHKI CO., LTD. CUPLA DURACT

ANNIN! that comes with the products Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet

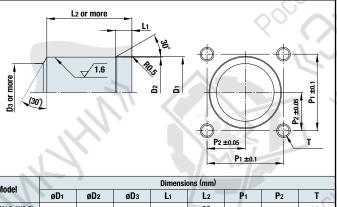
MANNA occimicko

MMAYHM



www.mikuni.n

POGGMMCKO ANDHONCKOAN TOMMA


www.mikuni.ru

In Another An I Pyritte

SHE

BHE

#### MALC-2 to 8HSP-FL type (With flange)



MULTI CUPLA MALC-HSP Type for High Pressure Use

#### MALC-2HS-FL 28 23 ^{+0.1} 22 +0.06 16 2.8 +0.2 28 14 MALC-2HP-FL 19 MALC-3HS-FL 28 27.1 +0.1 26 +0.08 2.8 +0.2 0 31 15.5 18 4 x M6 MALC-3HP-FL 22 Thread depth 17 mm or mor MALC-4HS-FL 39 6 ±0.2 37.7 ^{+0.3} 36.5+0.08 26 40 20 MALC-4HP-FL 30.5 MALC-6HS-FL 50 41.5 +0.08 6 ±0.2 42.5 +0.3 0 22.5 30 45 MALC-6HP-FL 40 4 x M10 Thread depth 15 mm or more MALC-8HS-FL 53 10.5^{±0.2} 47.5^{+0.3} 46.5 +0.08 27.5 35 55 MALC-8HP-FL 43

POCOMICKO

occimicto

MUNIC

MANNI

#### **Dimensions of End Configurations**

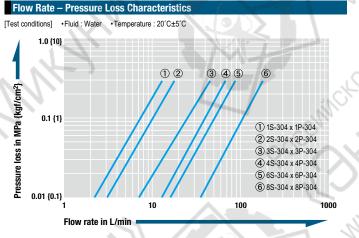


# **SEMICON CUPLA** SP Type For semiconductor manufacturing production installation 0.

# General purpose type with stainless steel body and rubber seal. **Electro-polished body for enhanced** corrosion resistance.

- Body and valve springs are stainless steel (SUS304). Body is electro-polished for enhanced corrosion resistance.
- Seal materials can be selected to suit your fluid and application, to flexibly comply with your semiconductor production process requirements.
- All components are cleaned, assembled, inspected, and then packed in a clean room.
- · Grease free. No grease is applied to the seal material.
- Each plug comes with a dust cap.
- · Stainless steel SUS316 body and valve springs are available as made-to-order products.




Specifications				13					
Body material	Elec	Electropolished stainless steel (SUS304)							
Size (Thread)	1/4	1/8", 1/4", 3/8", 1/2", 3/4", 1" 1/8-27NPT, 1/4-18NPT, 19/32-18UNS							
Pressure unit	MPa	kgf/cm ²	bar	PSI					
Working pressure	0.2	2	2	29					
	Seal material	Mark	Working temperature range	Remarks					
Seal material	Fluoro rubber	FKM (X-100)	0°C to +50°C	Standard materia					
Working temperature range	Ethylene-propylene rubber	EPDM (EPTS)	0°C to +50°C	Standard materia					
	Perfluoroelastomer	P	0°C to +50°C	Standard materia					
	Kalrez	KL	0°C to +50°C	Standard materia					

	Maximum Ti	ightening	Torque	Nm {kgf•cm				
0	Size	1/8-27NPT Rc 1/8	1/4-18NPT Rc 1/4	19/32- 18UNS	Rc 3/8	Rc 1/2	Rc 3/4	Rc 1
	Torque	9 {92}	14 {143}	20 {204}	22 {224}	60 {612}	90 {918}	120 {1224}

#### Interchangeability

Sockets and plugs can be connected regardless of end configurations if the first number in the model name is the same.

Minimum Cross-Sectional Area									
Model	1SP	2SP	3SP	4SP	6SP	8SP			
Min. cross-sectional area	13	17	48	64	83	192			



				1.7	4	
Plug	Female t	hread				
			40			
			<u>-</u>			
	Container	Mass	0.	Dimens	ions (mm)	$\sim$
Model	Container capacity	Mass (g)	L	Dimens C	ions (mm) H(waf)	×> √ ⊤
Model 1P-304		(g)	L	C	H(waf)	<b>T</b> Rc 1/8
1P-304	capacity		L 29			
	capacity For 10L to 20L	(g)	L 29 33	C	H(waf)	Rc 1/8
1P-304 1P-304-NPT	Capacity For 10L to 20L For 10L to 20L	(g) 19 34	33	<b>C</b> 19 19	H(war) Hex.14 Hex.21	Rc 1/8 1/8-27NPT
1P-304 1P-304-NPT 1P-304-UNS 2P-304	capacity           For 10L to 20L           For 10L to 20L           For 10L to 20L           For 10L to 20L	(g) 19	$\sim$	<b>C</b> 19	H(waf) Hex.14	Rc 1/8 1/8-27NPT 19/32-18UNS
1P-304 1P-304-NPT 1P-304-UNS	capacity           For 10L to 20L	(g) 19 34	33	<b>C</b> 19 19	H(war) Hex.14 Hex.21	Rc 1/8 1/8-27NPT 19/32-18UNS Rc 1/4
1P-304 1P-304-NPT 1P-304-UNS 2P-304 2P-304-NPT	capacity           For 10L to 20L	(g) 19 34 35	33 36	<b>C</b> 19 19 22	H(war) Hex.14 Hex.21 Hex.17	Rc 1/8 1/8-27NPT 19/32-18UNS Rc 1/4 1/4-18NPT
1P-304 1P-304-NPT 1P-304-UNS 2P-304 2P-304-NPT 2P-304-UNS	capacity           For 10L to 20L	(g) 19 34 35 41	33 36 36	<b>C</b> 19 19 22 22	H(war)           Hex.14           Hex.21           Hex.17           Hex.21	Rc 1/8 1/8-27NPT 19/32-18UNS Rc 1/4 1/4-18NPT 19/32-18UNS
1P-304 1P-304-NPT 1P-304-UNS 2P-304 2P-304-NPT 2P-304-UNS 3P-304	capacity           For 10L to 20L           For 10L to 20L	(g) 19 34 35 41 60	33 36 36 40	<b>C</b> 19 19 22 22 25	H(war)           Hex.14           Hex.21           Hex.17           Hex.21           Hex.21	Rc 1/8 1/8-27NPT 19/32-18UNS Rc 1/4 1/4-18NPT 19/32-18UNS Rc 3/8

IIA				WAF	: WAF stands for v	idth across
Socket	Female t	hread				
						T T
	Container	Mass		Dimens	ions (mm)	
Model	capacity	(g)	L	øD	H(WAF)	Т
15-304	Eor 101 to 201	82			7 10	Rc 1/

mouci	capacity	(g)	L	øD	H(WAF)	Т
1S-304	For 10L to 20L	82	48	24	14	Rc 1/8
1S-304-NPT	For 10L to 20L	84	40	24	14	1/8-27NPT
2S-304	For 10L to 20L	138	58	28	19	Rc 1/4
2S-304-NPT	For 10L to 20L	130	50	20	13	1/4-18NPT
3S-304	For 100L to 200L	204	65	35	21	Rc 3/8
4S-304	For 100L to 200L	424	72	45	29	Rc 1/2
6S-304	For 100L to 200L	708	88	55	35	Rc 3/4
8S-304	For 100L to 200L	1081	102	65	41	Rc 1

* Above are the dimensions of SUS304.

The appearance of SUS304 and 316 bodies is different





# Adopted stainless steel body and fluorine contained resin valves.

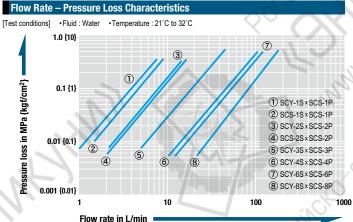
- The body and spring material of stainless steel (SUS304), and valve of fluorine contained resin ensure excellent performance with various chemicals.
- Body (SUS304) is electropolished for enhanced corrosion resistance.
- All components are cleaned, assembled, inspected, and then packed in a clean room.
- Grease free. Grease is not applied to the seal material.
- Plug comes with a dust cap.

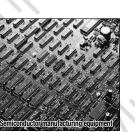
**Models and Dimensions** 

#### Specifications Body material Electropolished stainless steel (SUS304) 1/8", 1/4", 3/8", 1/2", 3/4", 1" Size (Thread) 1/8-27NPT, 1/4-18NPT, 19/32-18UNS Pressure unit MPa kgf/cm² ha PS Working pressure 02 29 2 2 Seal material Mark Ro ark Seal material Socket 0-rina Р Standard materia Perfluoroelastomer 0°C to +50°C Working temperature range Fluoropolymer resin (Socket: PFA, Plug: PTFE except 1P and 2P of PFA) Valve

*If you need a seal material other than perfluoroelastomer, please consult with us.

Maximun	n Tightening	Torque	d PA	2	Nm {	[kgf∙cm}	
Size	1/8-27NPT Rc 1/8	1/4-18NPT Rc 1/4	19/32- 18UNS	Rc 3/8	Rc 1/2	Rc 3/4	Rc 1
Torque	9 {92}	14 {143}	20 {204}	22 {224}	60 {612}	90 {918}	120 {1224}


#### Interchangeability


Sockets and plugs can be connected regardless of end configurations if the number  $\Box$  in the model name {SCS- $\Box$ S (P)} is the same. The plugs can be connected with sockets of SCY Type of the same size.

See below chart for details.

		• in	idicates co	onnection	capability	except for	made-to-	order pro	ducts.	1
			100			Socket				
Model			SCS	Туре			SCY	Туре		1
	IVIO	Daei	-1S	-2S	-1S	-2S	-3S	-4S	-6S	-85
		-1P (	•	1		1				1
Plug		-2P	11	•			X			
	SCS	-3P								
	Туре	-4P				~~~		•		
	-	-6P					( r		•	
	1	-8P								•

Minimum Cross-Sectional Area (										
Model	SCS-1SP	SCS-2SP	SCS-3P	SCS-4P	SCS-6P	SCS-8P				
Min. cross-sectional area	15	23	28	71	110	162				





WAF : WAF stands for width across flats.

Plug	Female t	hread				
<u>+</u>			jko of			
Model	Container		N/	Dimensio	ons (mm)	
wodei	capacity	Mass (g)		C.	H(WAF)	T
SCS-1P	For 10L to 20L	17	29	-10	Lloy 14	Rc 1/8
SCS-1P-NPT	For 10L to 20L		29	19	Hex.14	1/8-27NPT
SCS-1P-UNS	For 10L to 20L	34	33	19	Hex.21	19/32-18UNS
SCS-2P	For 10L to 20L	32		00	- 20	Rc 1/4
SCS-2P-NPT	For 10L to 20L	29	34	22	Hex.17	1/4-18NPT
SCS-2P-UNS	For 10L to 20L	41	36	22	Hex.21	19/32-18UNS
SCS-3P	For 100L to 200L	61	40	25	Hex.21	Rc 3/8
SCS-4P	For 100L to 200L	114	44	28	Hex.29	Rc 1/2
SCS-6P	For 100L to 200L	198	52	36	Hex.35	Rc 3/4
SCS-8P	For 100L to 200L	338	62	40	Hex.41	Rc 1

Socket	Female (	nreau				
() () () () () () () () () () () () () (		Har			L	T H
	Container			Dimens	ions (mm)	1
Model	capacity	Mass (g)	L	øD	H(WAF)	Т
SCS-1S-NPT	For 10L to 20L	84	48	24	14	1/8-27NPT
SCS-2S-NPT	For 10L to 20L	138	58	28	19	1/4-18NPT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						A 1. 1

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

CONTRACTOR NITTO KOHKI CO., LTD. 130

# Session Concupation Scy Type Consemiconductor manufacturing equipment Vorking pressure Varve structure Out Varve structure Out Varve structure Varve structure<

# Fluorine contained resin packing seal and perfluoroelastomer packing seal are used to reduce required connection load and to achieve tight sealing.

- The material of body and spring are of stainless steel (SUS304), while that of valve is of fluorine contained resin. The combination shows excellent performance with various types of chemicals.
- Body (SUS304) is electropolished for enhanced corrosion resistance.
- All components are cleaned, assembled, inspected, and then packed in a clean room.
- Grease free. Grease is not applied to the seal materials.
- Flanged body makes it easy to operate even with gloves.

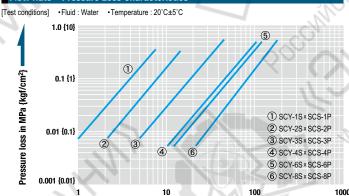
#### **Specifications Body material** Electropolished stainless steel (SUS304) 1/8", 1/4", 3/8", 1/2", 3/4", 1" Size (Thread) 1/8-27NPT, 1/4-18NPT Pressure unit MPa kaf/cm² ha PS Working pressure 02 20 2 Seal materia Mark Working erature r Re Socket Seal material packing Perfluoroelastome F 0°C to +50°C Standard materi Working temperature PTFE (TF) seal Fluoropolymer resin range Fluoropolymer resin (PTFE except 1P and 2P of PFA) Valve

*If you need a seal material other than perfluoroelastomer, please consult with us.

#### Maximum Tightening Torque

See page 130 of SEMICON CUPLA SCS Type.

#### Interchangeability


Can be connected with plugs of SCS Type of the same size. See below chart for details.

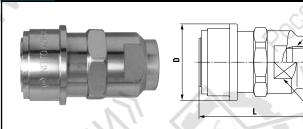
#### Interchangeability Check List (SCS Type, SCY Type

		• ir	ndicates co	onnection	capability	except for	made-to-	order proc	ducts.	
/						Socket				
			SCS	Туре	SCY Type					
	M	odel	-1S	-2S	-1S	-2S	-3S	-4S	-6S	-8S
	-1P	•		•						
Plug		-2P		•		•				
	SCS	-3P		100			•			
	Type	-4P						•		
		-6P							•	
		-8P		11			8			•
							and the second s			

Minimum Cr	oss-Sectio	nal Area		JEV	2	(mm²)
Model	SCY-1S	SCY-2S	SCY-3S	SCY-4S	SCY-6S	SCY-8S
Min. cross-sectional area	15	23	28	71	110	162

#### Flow Rate – Pressure Loss Characteristics




Flow rate in L/min

WAF : WAF stands for width across flats.

Nm {kgf·cm

#### Socket Female thread

**Models and Dimensions** 



Model	Container			Dimensio	ons (mm)								
wodei	capacity	Mass (g)	L	øD	H(WAF)	Т							
SCY-1S	For 10L to 20L	110	(10)	20	10	Rc 1/8							
SCY-1S-NPT	For 10L to 20L	116	(48)	29	18	1/8-27NPT							
SCY-2S	For 10L to 20L	180	(58)	33	22	Rc 1/4							
SCY-2S-NPT	For 10L to 20L	100		00		1/4-18NPT							
SCY-3S	For 100L to 200L	292	(65)	39	27	Rc 3/8							
SCY-4S	For 100L to 200L	519	(72)	50	35	Rc 1/2							
SCY-6S	For 100L to 200L	862	(88)	59	41	Rc 3/4							
SCY-8S	For 100L to 200L	1360	(102)	68	50	Rc 1							







# Polytetrafluoroethylene (PTFE) is utilised for the body.

- Polytetrafluoroethylene (PTFE) body gives excellent resistance to chemicals.
- Both socket and plug have built-in automatic shut-off valves that prevent fluid from outflowing when disconnected.
- No dissolution of metal ions from part in contact with liquid ensures excellent reliability.
- All components are cleaned, assembled, inspected and then packed in a clean room.
- Appropriate model can be selected form a wide variety of sizes to suit your application / fluid.
- Optional keyway lock to prevent incorrect connection. 10 keyway patterns are available.

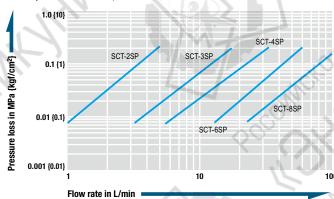
Specifications **Body material** Polytetrafluoroethylene (PTFE) 1/4", 3/8", 1/2", 3/4", 1" Size (Thread) 1/4-18NPT, 3/8-18NPT, 1/2-14NPT, 3/4-14NPT, 1-11.5NPT Pressure unit MP: kgf/cm ha PSI Working pressure 02 29 Norking Seal material Mark Remarks Socket Seal material FEP-cove fluoro rub 0-rina +5°C to +50°C Standard materia Working temperature range Fluoropolymer resin (PFA) Valve

#### Maximum Tightening amount (approximate)

With seal tape wrapped on the male thread, screw it firmly by hand, and then add more tightening with a wrench as shown below.

$1\frac{3}{4}$ to 2 turns	1/4" · 3/8" · 1/2" · 3/4" · 1" Size

Whichever method, overtightening may damage the thread and cause leakage, so take extra care.


#### Interchangeability

Sockets and plugs can be connected regardless of end configurations if the number  $\Box$  in the model name {SCT- $\Box$ S (P)} is the same.

Minimum Cross-Sectional Area (mm ² )									
Model	SCT-2SP	SCT-3SP	SCT-4SP	SCT-6SP	SCT-8SP				
Minimum cross-sectional area	12	34	54	103	225				
	State of Sta		100		2				

#### Flow Rate – Pressure Loss Characteristics





Models a	nd Dimensi	ons				$(\cdot, \cdot)$	NIV.				WAF : WAF stands	for width across flats
Plug	Female	thread					Socket	Female	thread			
<b>B</b>		L			þ	<b>F</b>					L	T H
Dimensions (mm) Dimensions (mm)			ions (mm)	10.								
Model	Mass (g)		A	ØC	H(WAF)	T	Model	Mass (g)		øD	H(WAF)	TT
SCT-2P	40				24	Rc 1/4	SCT-2S	101				Rc 1/4
SCT-2P-NPT	- 43	59	30.5	27.5	24	1/4-18NPT	SCT-2S-NPT	101	89.5	41	19	1/4-18NPT
SCT-3P	77 0	С со <i>г</i>	00.5	24.5	20	Rc 3/8	SCT-3S	450	400	40.5	04	Rc 3/8
SCT-3P-NPT	- 750	68.5	33.5	34.5	30	3/8-18NPT	SCT-3S-NPT	156	102	49.5	24	3/8-18NPT
SCT-4P	- 91	69.5	37.5	20.5	36	Rc 1/2	SCT-4S	192	107	54.5	30	Rc 1/2
SCT-4P-NPT	91	69.5	57.5	39.5	30	1/2-14NPT	SCT-4S-NPT	192	107	54.5	30	1/2-14NPT
SCT-6P	160	78.5	45	48	11	Rc 3/4	SCT-6S	240	123	68	36	Rc 3/4
SCT-6P-NPT	160	10.5	40	40	41	3/4-14NPT	SCT-6S-NPT	340	123	00	30	3/4-14NPT
SCT-8P	300	112	60.5	59	50	Rc 1	SCT-8S	770	172.5	82	46	Rc 1
SCT-8P-NPT	300	112	00.0	39	50	1-11.5NPT	SCT-8S-NPT	110	112.5	02	40	1-11.5NPT

* Available end configurations are female ISO Rc thread and female NPT thread.

Plug or socket with female ISO Rc end configuration has V-groove on the body as identification. (In case of female NPT thread, no V-groove on either plug or socket body)

Please inquire for other end configurations other than female thread (e.g. flanged or male thread).

# SEMICON CUPLA **SCAL Type**

#### For semiconductor manufacturing equipment



# Body is polytetrafluoroethylene (PTFE).

• Polytetrafluoroethylene (PTFE) body gives excellent resistance to chemicals.

- Unique seal design ensures minimal liquid spill. · Both socket and plug have built-in automatic shut-off valves that prevent fluid
- from outflowing when disconnected. · No dissolution of metal ions from part in contact with liquid ensures excellent
- reliability. · Push-to-connect design.
- Flanged socket body makes it easy to push down sleeve even when wearing gloves.
- · All components are cleaned, assembled, inspected and then packed in a clean room.
- · Concaved surface of the plug end prevents liquid loss and protects the plug seal surface from damage if dropped or hit.
- To prevent incorrect connection, a keyed type sleeve is available on a made-to-order basis.
- Ten key angle positions are available. The appearance of the keyed type body slightly differs from that of the standard type.

Models and Dimensions

Made-to-order item

Flange type

Specifications	;			and the second s	115				
Body material		Polytetrafluoroethylene (PTFE)							
Size (Thread)		1/4-18NPT, 3	1/4", 3/8", 1/2", 3/4", 1" 1/4-18NPT, 3/8-18NPT, 1/2-14NPT, 3/4-14NPT, 1-11.5NPT						
Pressure unit		MPa	kgf/cm ²	bar	PSI				
Working pressure		0.2	2	2	29				
Seal material	Socket	Seal material	Mark	Working temperature range	Remarks				
Working temperature	0-ring	Perfluoroelastomer	Р	+5°C to +50°C	Standard materia				
range	Valve		<b>F</b> lux and a low	mer resin (PFA)	•				

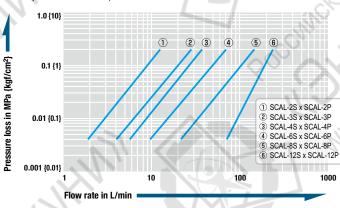
#### Maximum Tightening amount (approximate)

With seal tape wrapped on the male thread, screw it firmly by hand, and then add more tightening with a wrench as shown below

1³/₄ to 2 turns 1/4" · 3/8" · 1/2" · 3/4" · 1" Size

Whichever method, overtightening may damage the thread and cause leakage, so take extra care.

#### Interchangeability


Sockets and plugs can be connected regardless of end configurations if the number 
in the model name {SCAL-IIS (P)} is the same.

Minimum Cros	(mm²)					
Model (SCAL- 🗌)	2S (-NPT) X 2P (-NPT)	3S (-NPT) X 3P (-NPT)	4S (-NPT) X 4P (-NPT)	6S (-NPT) X 6P (-NPT)	8S (-NPT) X 8P (-NPT)	12S (-NPT/-FL-P) X 12P (-NPT/-FL-P)
Min. Cross-Sectional Area	24	41	59	108	234	611

Volume of Spillage per Disconnection Volume of spilage may vary depending upon the usage conditions. (m										
Model (SCAL-🗌 )	2S (-NPT) X 2P (-NPT)	3S (-NPT) X 3P (-NPT)	4S (-NPT) X 4P (-NPT)	6S (-NPT) X 6P (-NPT)	8S (-NPT) X 8P (-NPT)	12S (-NPT/-FL-P) X 12P (-NPT/-FL-P)				
Volume of spillage	0.07	0.09	0.13	0.20	0.59	1.26				



[Test conditions] •Fluid : Water •Temperature : 20°C±5°C



Plug	Female	thread	19		0	Socket	Female	thread			
	T							ļ		L	
Model	Dimensions (mm)					Model	Maga (g)	Dimensions (mm)			
Model	Mass (g)	øD	H(WAF)	Т	Woder	Mass (g)	L	øD	H(WAF)	T	
SCAL-2P	07	50	0.75		Rc 1/4	SCAL-2S	07	(00.5)	10.5	07	Rc 1/4
SCAL-2P-NPT	37	50	27.5	24	1/4-18NPT	SCAL-2S-NPT	97	(60.5)	40.5	27	1/4-18NPT
		- 00	1/4-18NP1 SCAL-2S-NP1	125		19		Rc 3/8			
SCAL-3P	70	00	045	00				(CO T)	47	20	110 0/0
SCAL-3P SCAL-3P-NPT	73	63	34.5	30	3/8-18NPT	SCAL-3S-NPT	135	(69.5)	47	32	3/8-18NPT
	- 1		$\sim$	1	-						
SCAL-3P-NPT	- 73 - 107	63 72	34.5 39.5	30	3/8-18NPT	SCAL-3S-NPT	135 177	(69.5)	47 52	32 36	3/8-18NPT
SCAL-3P-NPT SCAL-4P	107	72	39.5	36	3/8-18NPT Rc 1/2	SCAL-3S-NPT SCAL-4S	177	(76)	52	36	3/8-18NPT Rc 1/2
SCAL-3P-NPT SCAL-4P SCAL-4P-NPT	- 1		$\sim$	1	3/8-18NPT Rc 1/2 1/2-14NPT	SCAL-3S-NPT SCAL-4S SCAL-4S-NPT					3/8-18NPT Rc 1/2 1/2-14NPT
SCAL-3P-NPT SCAL-4P SCAL-4P-NPT SCAL-6P	- 107 - 153	72	39.5 48	36 41	3/8-18NPT Rc 1/2 1/2-14NPT Rc 3/4	SCAL-3S-NPT SCAL-4S SCAL-4S-NPT SCAL-6S	177 339	(76) (90)	52 65	36 46	3/8-18NPT Rc 1/2 1/2-14NPT Rc 3/4
SCAL-3P-NPT SCAL-4P SCAL-4P-NPT SCAL-6P SCAL-6P-NPT	107	72	39.5	36	3/8-18NPT Rc 1/2 1/2-14NPT Rc 3/4 3/4-14NPT	SCAL-3S-NPT SCAL-4S SCAL-4S-NPT SCAL-6S SCAL-6S-NPT	177	(76)	52	36	3/8-18NPT Rc 1/2 1/2-14NPT Rc 3/4 3/4-14NPT

*Made-to-order item

• Plug comes with a cap made of high density polyethylene (HDPE). • Outer appearance of NPT thread type differs slightly from that of the above

Please contact us about end configurations other than female thread such as flange and male thread. · Excessive tightening will damage the threaded part and result in leakage.

Note: A very small amount of gas can permeate polytetrafluoroethylene (PTFE) bellows in the socket.





# All plastic model. Fluoropolymer resin (PFA) body.

- All parts made of fluoropolymer resin. O-rings in particular are FEP-covered fluororubber with excellent chemical resistance and no rubber elution.
- To connect with a plug, just push the socket on to it. Disconnection is done in simple and one-handed button operation.
- Unique "double lock mechanism" prevents accidental disconnection of socket and plug.
- Branched tube port improves operability and reduces required piping space.
- Plugs come with a dust cap.

odel

SCF-2P-3

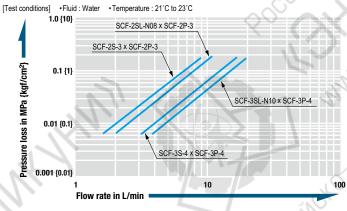
SCF-3P-4

Mass (g)

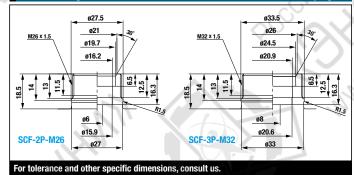
53

79

• All components are cleaned, assembled, inspected, and then packed in a clean room.


Specif	ications	\$			J	- 19			
Body mat	erial		Fluoropolymer resin (PFA)						
Size			3/8", 1/2" / M26, M32						
3120	Tub	e barb	ø6 mm x ø8 mm, ø8 mm x ø10 mm						
Pressure	unit		MPa	kgf/cm ²	bar	PSI			
Working	pressure		0.2	2	2	29			
Seal mate	erial	Socket	Seal material	Mark	Working temperature range	Remarks			
Working temperature		0-ring	FEP-covered fluoro rubber		+5°C to +50°C	Standard materia			
range	• · ⊢	Valve		Fluoropolymer resin (PFA)					

#### Interchangeability


Sockets and plugs can be connected regardless of end configurations if the number  $\Box$  in the model name {SCF- $\Box$ S (P)} is the same.

Minimum Cross-Section	(mm²)	
Model	SCF-2SP	SCF-3SP
Minimum cross-sectional ar	23.8	44.2

#### Flow Rate – Pressure Loss Characteristics



Reference diagram The thread dimensions of container side for the plug.



#### WAF : WAF stands for width across flats

Plug	Female t	hread	0			
						Ń
Model	Container		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
wouer	capacity	Mass (g)	J.Q.	D(WAF)	C	Т
		33	(53.7)	Hex.30 x ø32.5	(31.2)	M26 × 1.5
SCF-2P-M26	For 10L to 20L	55	(0011)		(0112)	10120 / 1.0

C

(31.2)

(35.2)

(67.2)

(71.2)

øD

32 5

39

Dimensions (mm)

H(WAF)

Hex 30

Hex.36

A(WAF)

24

30

øB

27

33

Rc 3/8

Rc 1/2

	Tube insertion port
-H	
and a second sec	

	Container 🔌		-	L ons (mm)		
Model	capacity	Mass (g)	1	D	E	Applicable tube
SCF-2SL-N08	For 10L to 20L	76	77	34	(45)	ø6 x ø8
SCF-3SL-N10	For 10L to 20L	116	85	39	(51)	ø8 × ø10

#### Socket Straight type (Female thread)

For tube connection

Socket

11.				<b>u</b>				T T H	
	Madal		Dimensions (mm)						
	Model	Mass (g)	L	øA	H(WAF)	D	O'É	- T -	
	SCF-2S-3	83	(92)	27	24	33	(45)	Rc 3/8	
	SCF-3S-4	124	(102.5)	33	30	39	(51)	Rc 1/2	
								- A	

#### For Inert Gas and Vacuum

# SP-V CUPLA For vacuum



# Automatic shut-off valves in both socket and plug for vacuum applications. Each can withstand a vacuum of as high as 1.3 x 10⁻¹ Pa even when disconnected.

- Uses automatic shut-off valves with ultra-tight sealed construction in both socket and plug. Ideal for vacuum applications.
- Having automatic shut-off valves in both socket and plug facilitates easy fluid handling. Suitable for a wide range of vacuum applications as high as 1.3 x 10⁻¹ Pa {1 x 10⁻³ mmHg} even when disconnected.
- Three types of seal material are available to suit any of the diversified production lines for air conditioners, refrigerators or similar.
- Can be connected with SP CUPLA Type A.



Can be connected with SP CUPLA Type A

Adopted fluoro-rubber (FKM), hydrogenated nitrile rubber (HNBR) and chloroprene rubber (CR) as the standard seal materials to suit

as the standard sear materials to suit air conditioner and refrigerator production lines Standard body materials are brass and stainless steel

(Note: Models 4SP-V and 6SP-V of stainless steel body are made-to order items)

The above photos are for 3SP-V

#### unique straight guide is incorporated to stabilize valve movemen

Both socket and plug have unique vacuum resistant automatic shut-off valves inside. The valve has excellent vacuum resistance even after disconnection.

Specifications								
Body material			Brass Stainless (Standard material) (Standard m					
Size (Thread)		1/4", 3/8"	/8" 1/2", 3/4" 1/4", 3/8"		1/2", 3/4"			
Working pressure	MPa	5.0	3.0	7.5	4.5			
	kgf/cm ²	51	31	76	46			
	bar	50	30	75	45			
	PSI	725	435	1090	653			
		Seal material	Mark	Working temperature range	Remarks			
Seal material		Chloroprene rubber	CR (C308)	-20°C to +80°C	Standard material			
Working temperature	range	Fluoro rubber	FKM (X-100)	-20°C to +180°C	Standard material			
	$\langle \rangle$	Hydrogenated nitrile rubber	HNBR (H708)	-20°C to +120°C	Standard material			

No grease is applied to the O-ring of the socket for HNBR seal material products when shipping.
 Be sure to apply refrigerating machine oil before use.

Maxim	Nm {kgf•cm}				
Size (Thread)		1/4"	3/8"	1/2"	3/4"
Torque	Brass	9 {92}	12 {122}	30 {306}	50 {510}
lorque	Stainless steel	14 {143}	22 {224}	60 {612}	90 {918}

#### Flow Direction

Fluid flow can be bi-directional when socket and plug are connected.



#### Interchangeability

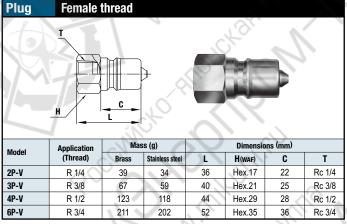
Socket and plug of different sizes cannot be connected. Interchangeable with SP CUPLA Type A but take heed of flow rate change.

Minimum Cross-Sectional Area						
Model	2SP-V	3SP-V	4SP-V	6SP-V		
Minimum cross-sectional area	18	38	71	110		

Suitability for Vacuum	1.3 × 10 ⁻¹ F	
Socket only	Plug only	
Operational	Operational	L

Operational Operational Operational Operational

Pa {1 × 10⁻³ mmH When connected


	a may rary aopona	ing apoin and adage of	inditiono.	(/
Model	2SP-V	3SP-V	4SP-V	6SP-V
Volume of air	1.0	2.4	3.2	10.5

#### Flow Rate – Pressure Loss Characteristics [Test conditions] •Temperature: 24°C+6°C • Fluid · Water 1.0 {10} (1) 2SP-V (2) 3SP-V 3 4SP-V (Brass) (4) 4SP-V (Stainless steel) (5) 6SP-V (Stainless steel) (6) 6SP-V (Brass) Pressure loss in MPa {kgf/cm²} 0.1 {1} 0.01 {0.1} (4) 10 6 100 Flow rate in L/min

135 NITTO KOHKI CO., LTD. CUPLA

#### SP-V CUPLA WAF : WAF stands for width across flats.

#### Models and Dimensions

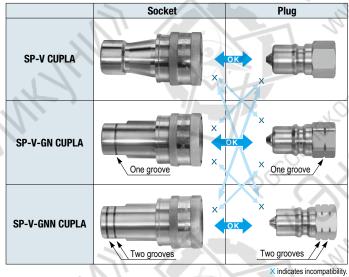


#### Seal Materials for Refrigerants

Various eco-friendly refrigerants for air conditioner and refrigerator have been developed. Nitto Kohki, having invested years in the research and development of excellent seal materials to withstand refrigerants and refrigerant oils, has made early attempts to develop and manufacture the seal materials for these eco-friendly refrigerants.

	Seal mat	erial
	Hydrogenated nitrile rubber	Chloroprene rubber
Mark	HNBR (H708)	CR (C308)
Features	Resistant to hydrofluorocarbons (HFC-134a, HFC-407C, HFC-410A, HFC-404A), and PAG type and ester type oils. Also resistant to heat up to 120°C	Excellent resistance to hydrofluorocarbons (HCFC-22 and HFC-134a)
Application	Refrigerator production lines Air conditioner production lines	Air conditioner production lines

#### Mass (g) Dimensions (mm) Application (Thread) Model øD H(WAF) Brass Stainless steel L Т 2S-V R 1/4 136 58 (28) Rc 1/4 127 19 3S-V R 3/8 217 197 65 (35) 21 Rc 3/8 4S-V R 1/2 421 393 72 45 29 Rc 1/2 6S-V R 3/4 709 658 88 55 35 Rc 3/4


The sleeve shape of 4S-V and 6S-V differs from that of the above photo.

Female thread

#### **Comparison of External Appearance**

Socket

When two different gases are used simultaneously in the production lines, SP-V-GN type and SP-V-GNN type (non-interchangeable with standard SP-V and each others) may be required in order to prevent connections to improper lines by mistakes. They are made-to-order items. For details please contact Nitto Kohki direct or its distributor in your country.



**Application Example** 





#### For Inert Gas and Vacuum

# **PCV PIPE CUPLA**

#### For connection to copper pipes





# Clamps directly on straight copper pipes ! Double seal construction withstands a vacuum of up to 1.3 x 10⁻¹ Pa.

- Clamps directly on to straight copper pipes eliminating unnecessary welding or flaring.
- Withstands a vacuum of up to 1.3 x 10⁻¹ Pa (when connected) making it possible to be used in leak testing, vacuum suction and refrigerant charge.
- Select from three standard types of seal materials to be used with fluids for air conditioner and refrigerator production lines. Many models to suit various pipe sizes.
- One lever operation simultaneously clamps and seals pipe. Double seal construction for tight fit on end and outside surface of pipe ensures excellent sealing and vacuum resistance.

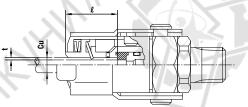
Specifications				_	_					ć
Model	PCV400	PCV470	PCV500	PCV600	PCV630	PCV800	PCV950	PCV1000	PCV1270	PCV159
Copper pipe OD mm	ø4.0	ø4.76 (3/16")	ø5.0	ø6.0	ø6.35 (1/4")	ø8.0 (5/16")	ø9.52 (3/8")	ø10.0	ø12.7 (1/2")	ø15.8 (5/8"
Body material					Bra	ass		$\leq$	(	
Pressure unit		MPa		kgf/ci	m²	bar			PSI	
Working pressure		4.5 46			45			653		
	Seal	materia	1	Mar	k	Working temperature range		nge	Remarks	
Seal material	Chlorop	orene rubb	er	CR (C308)		-20°C to +80°C		°C St	Standard material	
Working temperature range	Fluor	o rubbe	er F	KM (X-	-100)	-20°C	to +180	)°C St	andard n	nateria
		Hydrogenated nitrile rubber		HNBR (H708)		-20°C to +120°C		)°C St	Standard material	

Hydrogenated nitrile rubber (HNBR) is colored in blue for easy recognition

Maximum Tighte	Nm {kgf•cm}	
Size (Thread)	1/4"	3/8"
Torque	9 {92}	12 {122}

#### **Flow Direction**

Fluid flow can be bi-directional when socket and plug are connected.




Minimum Cross-Sectional Area							
Model	PCV400	PCV470	PCV500	PCV600	PCV630	PCV800	
Min. cross-sectional area	3.8	3.8	3.8	9.1	9.1	16.6	
Model	PCV950	PCV1000	PCV1270-2	PCV1270-3	PCV1590-2	PCV1590-3	
Min. cross-sectional area	16.6	16.6	50.3	73.9	50.3	78.5	

Suitability for Vacuum CUPLA only 1.3 x 10⁻¹ Pa {1 x 10⁻³ mmHg} When connected to a pipe Operational

Pipe Outside Diameter, Insert Length of Pipe into CUPLA, and Minimum Thickness of Pipe Wall

(mm)



tems with asterisk (*) are made-to-order products

Product Group Pipe OD (Cu)		Insert Length of Pipe into CUPLA ( $\ell$ )	Minimum Thickness of Pipe Wall ( t )		
PCV400*	ø4.0				
PCV470	ø4.76 (3/16")		11.		
PCV500*	ø5.0	19			
PCV600	ø6.0		0.8 or more		
PCV630	ø6.35 (1/4")				
PCV800	ø8.0 (5/16")				
PCV950	ø9.52 (3/8")	20.5			
PCV1000*	ø10.0				
PCV1270	ø12.7 (1/2")		10 as mars		
PCV1590	ø15.88 (5/8")		1.0 or more		

Wide variations of end configurations; 1/4", 3/8" and blind plug

Standard seal materials fluoro rubber (FKM), hydrogenated nitrile rubber (HNBR) and chloroprene rubber (CR) to suit air conditioner and refrigerator production lines Double seal design for tight fit on both end and outside of pipe

Many models to cover various pipe sizes

One lever operation simultaneously clamps and seals pipe

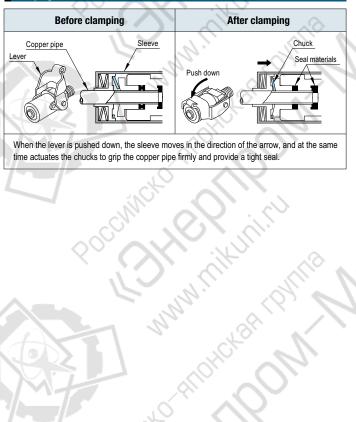
For exclusive use on straight copper pipes

#### PCV PIPE CUPLA

WAF : WAF stands for width across flats

н Т

Models and Dimensions


Product Ones and Ones of the			Model Application Ma (Thread) Ma		11		Dimensions (mm)			
Product Group Copper pipe OD mm		Mass (g)		L	øD	H(WAF)	øB	E	Т	
PCV400 * Ø4.0	PCV400-2	Rc 1/4	155	(59)	22.2	Hex.17	2.2	(32.5)	R 1/4	
F 6 V400	04.0	PCV400-3	Rc 3/8	155	(60)	22.2	Hex.19	2.2	(32.3)	R 3/8
	ø4.76	PCV470-2	Rc 1/4	155	(60)	22.2	Hex.17	2.2	(32.5)	R 1/4
PCV470	(3/16)	PCV470-3	Rc 3/8	160	(61)		Hex.19			R 3/8
	12	PCV470-0	Blind plug	160	(47)		-	-	- c>	2" -
PCV500 *	ø5.0	PCV500-2	Rc 1/4	155	(59)	22.2	Hex.17	2.2	(32.5)	R 1/4
F G V 300	05.0	PCV500-3	Rc 3/8	155	(60)	22.2	Hex.19		(32.5)	R 3/8
		PCV600-2	Rc 1/4	150	(60)	22.2	Hex.17	- 3.4	(32.5)	R 1/4
PCV600	ø6.0	PCV600-3	Rc 3/8	155	(61)		Hex.19			R 3/8
	C	PCV600-0	Blind plug	155	(47)					-
		PCV630-2	Rc 1/4	145	(60)	2	Hex.17	3.4	(32.5)	R 1/4
PCV630	ø6.35 (1/4)	PCV630-3	Rc 3/8	150	(61)	22.2	Hex.19			R 3/8
	(174)	PCV630-0	Blind plug	150	(47)	$\mathcal{N}$	-	Tel		-
		PCV800-2	Rc 1/4	175	(62)		Hex.17	4.6		R 1/4
PCV800	ø8.0 (5/16)	PCV800-3	Rc 3/8	180	(63)	24.8	Hex.19		(35.5)	R 3/8
<		PCV800-0	Blind plug	185	(50)					-
	-0.50	PCV950-2	Rc 1/4	175	(62)		Hex.17	4.6		R 1/4
PCV950	ø9.52 (3/8)	PCV950-3	Rc 3/8	180	(63)	24.8	Hex.19	4.0	(35.5)	R 3/8
A		PCV950-0	Blind plug	180	(50)		-			SP-
PCV1000 *	ø10.0	PCV1000-2	Rc 1/4	155	(62)	24.8	Hex.17	4.0	(35.5)	R 1/4
FGV1000 "	010.0	PCV1000-3	Rc 3/8	155	(63)	24.0	Hex.19	4.6		R 3/8
1 A		PCV1270-2	Rc 1/4	470	(80)		Hex.24	8.0	00	R 1/4
PCV1270	ø12.7 (1/2)	PCV1270-3	Rc 3/8	465	(81)	34.8	Hex.24	9.7	(45.0)	R 3/8
	(112)	PCV1270-0	Blind plug	475	(68)		-	-		
JM-F	45.00	PCV1590-2	Rc 1/4	424	(80)		Hex.24	8.0		R 1/4
PCV1590	ø15.88 (5/8)	PCV1590-3	Rc 3/8	435	(81)	34.8	Hex.24	10.0	(45.0)	R 3/8
		PCV1590-0	Blind plug	445	(68)					- 1

ш

리

For mass with a plug, add (brass body) 2P-V : 39 g, 3P-V : 67 g, (stainless steel body) 2P-V : 34 g, or 3P-V : 59 g
 *Available on request

#### **Clamping Mechanism**







#### **For Paint**

# PAINT CUPLA

#### Piping for painting equipment



# Quick connection and disconnection of paint spray gun and paint fluid line is realized.

- Unique swing connection system enables easy connection and disconnection of paint spray gun and paint hose even by gloved hands.
- Full-open gate valve mechanism prevents paint precipitate buildup.
- Adoption of special resin seal that has resistance against solvents made it
  possible to feature superior durability, long stable capability, and easy
  cleaning of paint spray gun after the job.
- Connection and disconnection can be made even if paint sticks to the socket sleeve.
- Small and lightweight design (80 g per set) reduces the weight to be held by hand of operators.
- Built-in sleeve lock mechanism prevents accidental disconnection of CUPLA, ensuring safe operation.
- Wide variety of end configurations (standard thread: G 3/8) are available in response to

various paint spray guns.

**Flow Direction** 

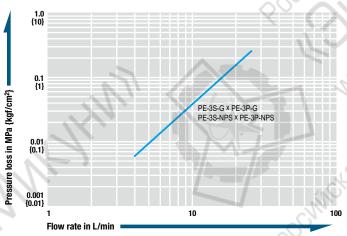
Fluid must run from socket to plug.

#### **Specifications Body material** Plug : Stainless steel Socket : Aluminum allov Size (Thread) 3/8" 3/8NPS Pressure unit MPa kgf/cm² har PSI Working pressure 10 10 10 145 Working temperature rang Seal material Mark Remarks Seal material Working temperature range Fluoro-resin PFΔ 0°C to +50°C Standard materia

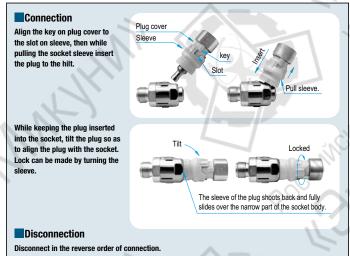
# Tightening Torque Range 15 (153)

Nm {kgf•cm}

#### Interchangeability


Sockets and plugs can be connected regardless of end configurations.

#### Suitability for Vacuum


Not suitable for vacuum application in either connected or disconnected condition.

#### Flow Rate - Pressure Loss Characteristics

[Test conditions] •Fluid viscosity : 8 x 16-7 m²/s (Equivalent to water) •Temperature : 30°C±5°C



#### **Connection and Disconnection**



Models a	and Dime	nsions	1	$\mathcal{O}^{*}$	$\sim$		N			$\sim$
Plug	PE-3	P typ	e (Femal	e thread)				Socket	PE-3	S typ
T	H L	PANT CUPLA		NPS end c	onfiguration has an	n identification groom	ve on the CUPLA.	NPS end confi	guration has an	identifica
Model	Application	Mass		01	)imensions (m	m)		Model	Application	Mass
Mouei	(Thread)	(			~D	1 1 1 1		WOUCI		111455
	(Tilleau)	(g)	L L	øD	øB 🔬	H(WAF)			(Thread)	(g)
PE-3P-G	G 3/8	(y) 31	L (58)	<b>ØD</b> 24	<b>ØВ</b> 4.5	H(WAF) 19	G 3/8	PE-3S-G	(Thread) G 3/8	

 WAF : WAF stands for width across flats.

 Cket
 PE-3S type (Male thread)

 Figure (Male thread)
 T
 T

 Send configuration has an identification groove on the CUPLA.
 Dimensions (mm)
 T

 Application (Thread)
 Mass (g)
 Dimensions (mm)
 T

 S-G
 G 3/8
 48
 (47)
 27
 23
 G 3/8

 S-NPS
 3/8 NPS
 48
 (47)
 27
 23
 3/8 NPS





# Solves the troubles of ferrule joints by the effortless operation unique to CUPLA. Easy disassembly and cleanability help in hygienic management of HACCP.

- It can be connected by just inserting the plug to the socket and twisting the "Safety lock".
- The "Safety lock" feature ensures that there can be no unintentional disconnection of the coupling.
- O-rings that conforms to the Food sanitation Act of Japan is adopted.
- An operator friendly design. Seal parts will not drop off during connection like conventional fittings.
- Stainless steel (JIS SUS316L equivalent) for the liquid contact parts, and finished with buffing (#400).

#### Smart Connect and Disconnect





Specifications				10			
Body material	Stainless steel [ SCS16 (JIS SUS316L equivalent) ] *1						
Surface finish of the liquid-contact part	Buff finish #400						
Size of end configurations	Welding	g type *2	Ferrule type *3				
Size of end configurations	1.5 \$ / 2.0 \$						
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	1.0	10	10	145			
	Seal material	Mark	Working temperature range	Remarks			
Seal material *4	Silicone rubber	SI	0°C to +110°C	Standard material			
Working temperature range	Fluoro rubber	FKM (X-100)	0°C to +180°C	Available on request			
	Ethylene-propylene rubber	EPDM (EPT)	0°C to +150°C	Available on request			
0-ring size 1.5 S: P38, 2.0 S: P50 (Dimensions, tolerance: refer to JIS B 2401, Hardness:							

*1: All metal parts are equivalent to SUS304 except those exposed to liquid contact.

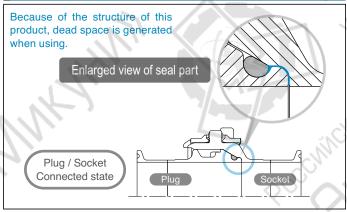
*2: The dimensions of the weld zone conform to JIS G 3447 stainless steel sanitary pipe *3: Please use ferrule couplings conforming to IDF / ISO 2852.

 Please use terrule couplings conforming to IDF 7ISU 2652.
 The seal material conforms to article No.3-D-3-(1) Rubber utensils (except nursing utensils) or Containers / Packages. It has passed both material and elution tests specified in the Food sanitation Act and the standards for Food and Food additives (Notice No.370 of 1959 issued by the Ministry of Health and Welfare of Japan). Conforms to standard No.21CFR 177.2600 of the US Food and Drug Administration (FDA).

#### **Flow Direction**

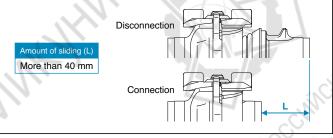
Fluid flow can be bi-directional when socket and plug are connected.




#### Interchangeability

Sockets and plugs can be connected regardless of end configurations if the size is same.

Suitability for Vacuum	V	Vacuum pressure: 53 kPa A		
Socket only	Plug only	When connected		
_	-	Operational		


acuum performance may vary depending upon working environment and usage conditions

#### Seal part (cross section)



#### When installing the CUPLA on the pipe

Welding type JIS G 3447 standard) Connection and disconnection of socket and plug is enabled by sliding either the socket or plug to the central axis of pipe. When connecting the CUPLA to the pipe, ensure that there is at least minimum moving distance (L) in the axial direction.



#### HACCP: Hazard Analysis and Critical Control Point

HACCP is the management system in which food safety is addressed to the process from production, procurement and handling of raw materials to distribution and consumption of finished products through the analysis and control of biological, chemical and physical hazards.

#### HYGIENIC CUPLA Easy Wash Type



£, Dimensions (mm) Model Mass (g) øD øB L SEW-1.5P-FR * (73.5)50.5 35.7 224 SEW-2.0P-FR * 301 (73.5) 64 47.8

# Mass (g) L (79.5) SEW-1.5S-FR 407

455

(79.5)

**Dimensions (mm)** øD Н øB 50.5 (84)35.7

(94)

47.8

A type without seal material is also available. In such case, the model name ends with "-NP". (ex: SEW-2.0P-BW -NP

#### Applications



#### Easy assembly and disassembly

No tools are required to disassemble / assemble HYGIENIC CUPLA. Small number of parts that are easy to handle, aiding efficient maintenance.



#### **Construction and Safety standards**

Since the O-Ring is attached beforehand, it will not drop off during connection like conventional fittings. And the seal material conforms to article No. 3-D-3-(1) Rubber utensils (except nursing utensils) or Containers / Packages. It has passed both material and elution tests specified in the Food sanitation Act and the standards for Food and Food additives (Notice No.370 of 1959 issued by the Ministry of Health and Welfare of Japan). Also conforms to standard No. 21 CFR 177.2600 of the US Food and Drug Administration (FDA).



SEW-2.0S-FR

#### Easy washing of the whole unit

After disassembly, small number of components requires minimum effort when cleaning. No small parts to lose.

#### Accessory







64

#### Safety Lock function

As a safety measure, the "Safety lock" feature ensures that there can be no unintentional disconnection of the CUPLA. By turning the cam handle, you can maintain the connected state of the socket and plug.

#### Consumables

The O-ring and Lock plate ASSY are consumable items. See the following list as a replacement guide for the Lock plate ASSY. Replacement guide Replacement parts Connection and disconnection times Lock plate ASSY 1000 times Lock plate ASSY - When the Lock plate ASSY is deformed, replace it with a new one regardless of connection / disconnection times. - The durability of the O-ring differs depending on the operating environment and conditions (pressure and temperature etc.).

# Semi-Standard CUPLA Series



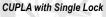




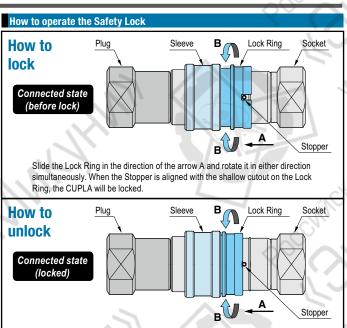
# **CUPLA with Single Lock CUPLA with Safety Lock**

Accidental disconnection prevention mechanism

The standard CUPLA series listed on the lower right can have an additional single lock or a safety lock mechanism to prevent accidental disconnection.


#### CUPLA with Single Lock

The sleeve is provided with a cutout and the body of the socket has a projecting lock pin or ball. After connecting the CUPLA, simply turn the sleeve to lock the back and forth movement of the sleeve.


CUPLA with Safety Lock

A sleeve stopper Lock Ring is provided behind the sleeve. After connecting the CUPLA, simply turning the Lock Ring to disable the back and forth movement of the sleeve (see diagram sketch on the right top).









Slide the Lock Ring in the direction of the arrow A and rotate it in either direction simultaneously. When the Stopper is aligned with the deeper cutout on the Lock Ring, the CUPLA will be unlocked.

#### CUPLA with Single Lock

HI CUPLA (Brass) / MOLD CUPLA / SP CUPLA Type A / TSP CUPLA / HSP CUPLA / 210 CUPLA *The above all with single lock are made-to-order.

The following CUPLA come with single lock as standard feature.

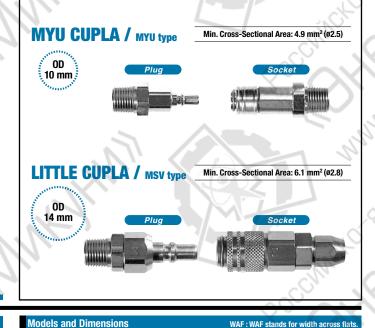
HI CUPLA BL / LOCK CUPLA 200 / HSU CUPLA / 350 CUPLA / FLAT FACE CUPLA F35 / FLAT FACE CUPLA FF / 450B CUPLA

#### CUPLA with Safety Lock

SP CUPLA Type A / TSP CUPLA / HSP CUPLA / 210 CUPLA / 350 CUPLA *The above all with safety lock are made-to-order.

The following CUPLA come with safety lock as standard feature. HOT WATER CUPLA / S210 CUPLA

# **Two-way Shut-off Type Small Size CUPLA**

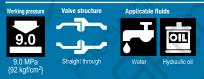

For temperature controllers



- · Push-to-connect operation.
- · Both socket and plug have built-in automatic shut-off valves to prevent fluid spill out when disconnected.
- Easy connection even in a restricted area.
- Lightweight feature will allow you easy design of multiple piping.

Specifications					- Mi		
Body material		MYU C	CUPLA	Little C	CUPLA		
Douy material		Stainless steel, Bra	ass (Nickel plated)	Stainle	ss steel		
Size (Thread)			Please che	eck with us.			
	MPa	1.	0	1.	.5		
Working pressure	kgf/cm ²	1	0	1	5		
forming procedure	bar	1	0	15			
	PSI	14	5	2'	18		
	1	Seal material	Mark	Working temperature range	Remarks		
Seal material	Seal material		NBR (SG)	-20°C to +80°C			
Working temperature	range	Ethylene-propylene rubber	EPDM (EPT)	-40°C to +150°C	Available on request		
		Fluoro rubber	FKM (X-100)	-20°C to +180°C	1		

Two-way Shut-off Type Small Size CUPLA Series






Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the product

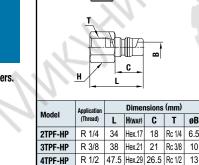
# TSP-HP CUPLA for High Pressure

For high pressure and general purposes



**Specifications** Body material

Size (Thread)

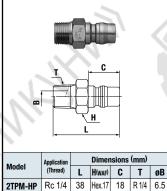

Pressure unit

Seal material

Working pressure

Working temperature range

• Good for high pressure water piping such as in high pressure washers, or car washers. • Valveless type ensures high flow rate.




Plug

d)	Socke	t TSF	type	(Fema	le thre	ad)
					H	to.
	Model	Application	0	Dimensi	ons (mm	ı)
øB	wouel	(Thread)	L	øD	H(WAF)	T
6.5	2TSF-HP	R 1/4	32	24	Hex.19	Rc 1/4
10	3TSF-HP	R 3/8	35	28	Hex.23	Rc 3/8
13	4TSF-HP	R 1/2	44.5	35	Hex.29	Rc 1/2

#### Plug TPM type (Male thread)

TPF type (Female thread)



43 Hex.19 21 R 3/8 10

3TPM-HP Rc 3/8

⚠ Precautions	for	use
---------------	-----	-----

## **Warning**

Do not connect with standard TSP CUPLA (Page 77 to 80).

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products.

MPa

9.0

Seal material

Nitrile rubber

Ethylene-propylene

Stainless steel

1/4", 3/8", 1/2"

bar

90

-20°C to +80°C

-40°C to +150°C

Working erature range

PS

1310

Remarks

Available on request

kgf/cm²

92

Mark

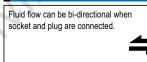
NBR (SG)

EPDM (EPT)

# **HIGH FLOW CUPLA**

# For Medium Pressure Vorking pressure 1.0 MPa (10 kqf/cm²) Valve structure Two-way shut-off Valve structure Valve structure Two-way shut-off Valve structure Va

# Drastically increases flow volume while minimizing pressure drop.


- Both socket and plug have built-in automatic shut-off valves.
- High flow rate type to increase cooling effect.
- Quick connection and disconnection of cooling pipes.
- Compact and space-saving design. Compared with the coupled length of SP CUPLA type A, that of HIGH FLOW CUPLA is reduced by 22%.
- Installation and maintenance can be done within a short time.

Specifications           Body material         Stainless steel, Brass										
Stainless steel, Brass										
1/4", 3/8", 1/2"										
MPa	kgf/cm ² 10 N Ma		bar	$\mathcal{O}$	PSI					
1.0			10		145					
Seal material			ark	Working temperature range						
Ethylene-propylen rubber	e	EPDM			-40°C to +150°C					
Fluoro rubbe	r	FKM			-20°C to +180°C					
	1.0 Seal material Ethylene-propylen rubber	1/           MPa         kgf/cm²           1.0         10           Seal material         Ethylene-propylene	1/4", 3,           MPa         kgf/cm²           1.0         10           Seal material         Ma           Ethylene-propylene rubber         EP	1/4", 3/8", 1/2"           MPa         kgf/cm²         bar           1.0         10         10           Seal material         Mark           Ethylene-propylene         EPDM	1/4", 3/8", 1/2"           MPa         kgf/cm²         bar           1.0         10         10           Seal material         Mark         tex           Ethylene-propylene rubber         EPDM         -44					

Stanuaru searma		blass bouy.
		1.1

Maxin	num Tighten	ing Torque		Nm {kgf•cm}
Model		HFL-2P / HFL-2S	HFL-3P / HFL-3S	HFL-4P / HFL-4S
Torque	Stainless steel	14 {143}	22 {224}	60 {612}
loique	Brass	9 {92}	12 {122}	30 {306}

# Flow Direction





## Interchangeability

Socket

Model

HFL-2S

HFL-3S

HFL-4S

Socket and plug of different sizes cannot be connected.

Minimum Cross-Sectional A	rea	(Internet	(mm²)
Model	HFL-2P / HFL-2S	HFL-3P / HFL-3S	HFL-4P / HFL-4S
Minimum Cross-Sectional Area	32	53	91

Suitability for Vacuum	1.3	x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}	
Socket only	Plug only		When connected
- ·	-		Operational

# Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Water •Temperature: 20°C±5°C

Female thread

Mass (g)

Brass

110

165

231

Stain

99

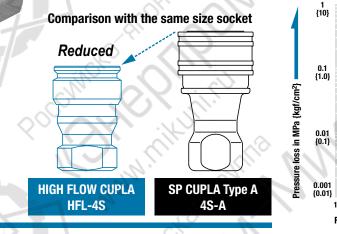
150

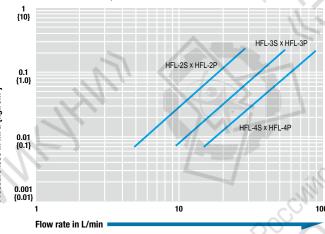
211

(47)

(49)

60


Applicatio


(Thread)

R 1/4

R 3/8

R 1/2





WAF : WAF stands for width acro

Dimensions (mm)

øD

26

32

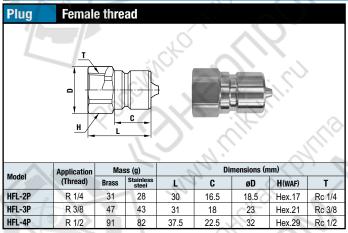
35

H(WAF)

19

24

29


т

Rc 1/4

Rc 3/8

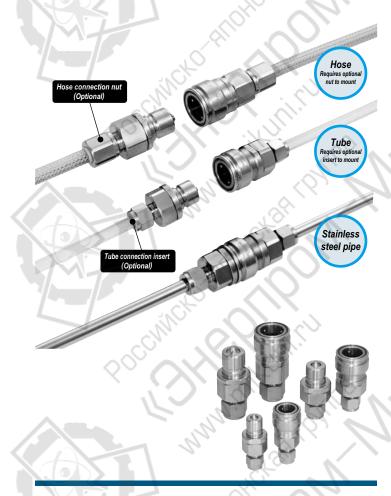
Rc 1/2

Models and Dimensions



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

145 NITTO KOHKI CO., LTD. CUPLE CONTROL


# HIGH FLOW CUPLA BI Type

CUPLA with ferrule flange for piping of water and fluids for temperature control

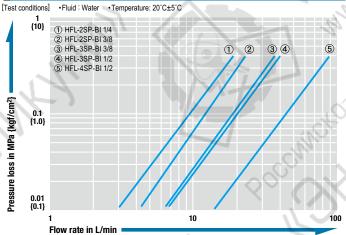


# **HIGH FLOW CUPLA and ferrule flange are** combined to achieve efficient piping.

- Easy connection with stainless steel pipe.
- · Connection to plastic hose is possible with optional hose connection kit.
- · Connection to various tubes is also possible via the use of appropriate optional inserts.



Specifications			1	- Mis-					
Body material	Stainless steel								
Applicable pipe size	1/4", 3/8", 1	1/2" (See the bel	ow list for hose an	d tube size.)					
Pressure unit	MPa	kgf/cm ²	bar	PSI					
Working pressure	1.0	10	10	145					
On all material	Seal material	Mark	Working temperature range	Remarks					
Seal material Working temperature range	Ethylene-propylene rubber	EPDM	-40°C to +150°C	Standard materia					
5	Fluoro rubber	FKM	-20°C to +180°C	Made-to-order item					




## Interchangeability

Socket and plug of different sizes cannot be connected.

Suitability for Vacuum	1.3	3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}
Socket only	Plug only	When connected
_	_	Operational

# Flow Rate - Pressure Loss Characteristics (When co



## Stainless steel pipe, hose, and tube size

	Stainless steel pipe	Hose connecti	on nut (Optional)		Tube	connection	insert (Opti	onal)	1			
Model	X.			* <u>····</u>								
	Pipe dia, Inch		Hose size	Type of	Tube dimensions		Insert dir	nensions				
	(mm)	Model	(ID x OD) mm	insert	(ID x OD) mm	E (mm)	L (mm)	A (mm)	D (mm)			
		-	-	DTI 4-2	ø3.18 x ø6.35	2.3	11.9	6.35	3.18			
HFL-2SP-BI 1/4	1/4 (ø6.35)	-	-	DTI 4-2.5	ø3.97 x ø6.35	2.7	11.9	6.35	3.97			
	1/4 (00.00)	-	-	DTI 4-2.75	ø4.32 x ø6.35	2.7	11.9	6.35	4.32			
		-	-	DTI 4-3	ø4.76 x ø6.35	3.5	11.9	6.35	4.76			
HFL-2SP-BI 3/8	3/8 (ø9.53)	-	-	DTI 6-3	ø4.76 x ø9.53	3.0	14.3	9.53	4.76			
HFL-23F-DI 3/0	3/0 (09.33)	-	-	DTI 6-4	ø6.35 x ø9.53	4.8	14.3	9.53	6.35			
HFL-3SP-BI 3/8	3/8 (ø9.53)	-	-	DTI 6-3	ø4.76 x ø9.53	3.0	14.3	9.53	4.76			
NFL-33F-DI 3/0	3/6 (09.33)	-	-	DTI 6-4	ø6.35 x ø9.53	4.8	14.3	9.53	6.35			
HFL-3SP-BI 1/2	1/2 (ø12.7)	E1-6 x 11	ø6 x ø11	DTI 8-4	ø6.35 x ø12.7	4.8	19.1	12.7	6.35			
NFL-33F-DI 1/2	1/2 (012.7)	E1-8 x 13.5	ø8 x ø13.5	DTI 8-6	ø9.53 x ø12.7	7.9	19.1	12.7	9.53			
HFL-4SP-BI 1/2	1/2 (ø12.7)	E1-6 x 11	ø6 x ø11	DTI 8-4	ø6.35 x ø12.7	4.8	19.1	12.7	6.35			
111 L-407-DI 1/2	1/2 (1012.7)	E1-8 x 13.5	ø8 x ø13.5	DTI 8-6	ø9.53 x ø12.7	7.9	19.1	12.7	9.53			

Note: The material of tube to be applied must be any of nylon, polyester, polypropylene, or Teflon. The nut for stainless steel pipe comes with star HIGH FLOW CUPLA. When a hose or tube is connected to the CUPLA, an optional hose or nnection nut or tube connection insert is require

Models an	nd Dimen	sions	;			$\sim$	$\leq$										WAF : WAF stand	s for width across flats.
Plug	For p	ipe c	conn	ectio	on					Socket	For p	ipe (	conn	ectio	on 🖉			
						3			}	1 L	Ş		Ħ	F			L	
Model	Application (Pipe size)	Mass		$\sim$		. 1	Dimens	ions (mm)		Model	Application (Pipe size)	Mass					Dimensions (mm)	at the
WOUEI	(ripe size) (mm)	(g)	L-	C	A	øD	øB	H(WAF)	T(WAF)	Model	(mm)	(g)	L	Α	øD	øB	H(WAF)	T(WAF)
HFL-2P-BI 1/4	6.35 (1/4")	66	(51.9)	16.5	(15.4)	23	(6.35)	Hex.20.64 (13/16")	Hex.14.29 (9/16")	HFL-2S-BI 1/4	6.35 (1/4")	97	(54.9)	(15.4)	26	(6.35)	Hex.20.64 (13/16")	Hex.14.29 (9/16")
HFL-2P-BI 3/8	9.53 (3/8")	74	(53.4)	16.5	(17)	23	(9.53)	Hex.20.64 (13/16")	Hex.17.46 (11/16")	HFL-2S-BI 3/8	9.53 (3/8")	105	(56.5)	(17)	26	(9.53)	Hex.20.64 (13/16")	Hex.17.46 (11/16")
HFL-3P-BI 3/8	9.53 (3/8")	109	(54.8)	18	(17)	29.5	(9.53)	Hex.26.99 (1 1/16")	Hex.17.46 (11/16")	HFL-3S-BI 3/8	9.53 (3/8")	165	(60.3)	(17)	32	(9.53)	Hex.26.99 (1 1/16")	Hex.17.46 (11/16")
HFL-3P-BI 1/2	12.7 (1/2")	134	(59)	18	(23)	29.5	(12.7)	Hex.26.99 (1 1/16")	Hex.22.23 (7/8")	HFL-3S-BI 1/2	12.7 (1/2")	189	(64.6)	(23)	32	(12.7)	Hex.26.99 (1 1/16")	Hex.22.23 (7/8")
	12.7 (1/2")	160	(68.7)				1					-	(73.2)					

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products.

# CUPLA NITTO KOHKI CO., LTD. 146

# SP CUPLA Type A PV Type

For Medium Pressure / Connectable with residual pressure With Purge Valve



# Equipped with residual pressure eliminating valve (up to 1 MPa).

- Automatic shut-off valves in both socket and plug prevent fluid spill out on disconnection.
- Smooth connection even when there is residual pressure when connecting.
- No residual pressure eliminating operation required on your piping. Just connect to purge the remaining pressure.



Admixture of All off Conficction may vary depending upon the usage conductors. (IIIL)								
Model	6S-A-PV X 6P-A	6P-A-PV X 6S-A	8S-A-PV x 8P-A	8P-A-PV x 8S-A	10S-A-PV x 10P-A	10P-A-PV x 10S-A	12S-A-PV x 12P-A	12P-A-PV x 12S-A
Volume of air	11		17		29		45	
Volume of Spillage per Disconnection May vary depending upon the usage conditions. (mL)								
Model	6S-A-PV X 6P-A	6P-A-PV X 6S-A	8S-A-PV x 8P-A	8P-A-PV X 8S-A	10S-A-PV x 10P-A	10P-A-PV x 10S-A	12S-A-PV x 12P-A	12P-A-PV X 12S-A

12

26

36

Specifica	ations						States.			112
Body mate	rial		Brass, Stainless steel (SUS304)							U.
Model			6S-A-PV	6P-A-PV	8S-A-PV	8P-A-PV	10S-A-PV	10P-A-PV	12S-A-PV	12P-A-P\
woder			Socket	Plug	Socket	Plug	Socket	Plug	Socket	Plug
Size (Thread)		Rc 3/4 Rc 1		Rc 1 1/4 Rc 1 1/2			1/2			
		MPa		3.0				2	.0	
	Brass	kgf/cm²	31			20				
		bar	30				2	0		
Working		PSI	435			290				
pressure		MPa	4.5			3.0				
	Stainless	kgf/cm ²	7.	46			31			
	steel	bar		4	5	1	30			
		PSI	653			Ň	435			
Connectable residual pressure*				1	.0 MPa, 1	10 kgf/cr	m², 10 ba		SI	
Seal materia	a l		Seal m	aterial	Ма	ark	Wor temperat	king ure range	Rem	arks
Working tem	perature r	ange	Nitrile	rubber	NBR	(SG)	-20°C to	с +80°С	Standard	Imateria

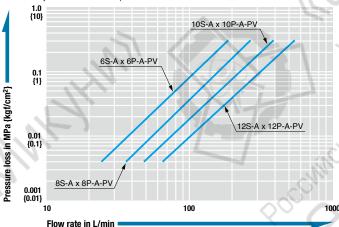
* The allowable residual pressure that can be connected when the fluid is limited to liquid.

<b>Maximum</b> T	ightening To	Nm {kgf•cm}			
Size (Thread)		Rc 3/4 Rc 1		Rc 1 1/4	Rc 1 1/2
Torque	Brass	50 {510}	65 {663}	150 {1530}	180 {1836}
	Stainless steel	90 {918}	120 {1224}	260 {2652}	280 {2856}

## Flow Direction

Fluid flow can be bi-directional when

socket and plug are connected.


## Interchangeability

Socket and plug of different sizes cannot be connected. Can be connected with SP CUPLA Type A AND SP-V CUPLA of the same size. Refrain from connecting SP CUPLA Type A PV together, since the residual pressure will not release.

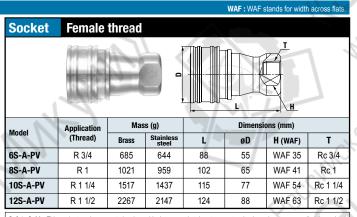
Minimum Cross-Sectional Area						(mm²)			
	Model	6S-A-PV X 6P-A	6P-A-PV x 6S-A	8S-A-PV X 8P-A	8P-A-PV X 8S-A	10S-A-PV X 10P-A	10P-A-PV X 10S-A	12S-A-PV x 12P-A	12P-A-PV 12S-A
	Min. Cross-Sectional Area	178		229		395		553	

## Flow Rate – Pressure Loss Characteristics

[Test conditions] •Fluid : Water •Temperature: 25°C±5°C



# **Models and Dimensions**


Volume of spillage

8.4

Plug	Female	thread						
Model	Application	Mass (g)		Dimensions (mm)				
woder	(Thread)	Brass	Stainless steel	L 🚽	C	H (WAF)	$\sqrt{1}$	
6P-A-PV	R 3/4	204	189	52	36	Hex.35	Rc 3/4	
8P-A-PV	R 1	330	307	62	40	Hex.41	Rc 1	
10P-A-PV	R 1 1/4	627	617	70	45	Hex.54 (*1)	Rc 1 1/4	
12P-A-PV	R 1 1/2	917	877	75	49	Hex.63 (*2)	Rc 1 1/2	

(*1) Stainless steel: WAF 54 x ø59 (*2) Stainless steel: WAF 63 x ø68

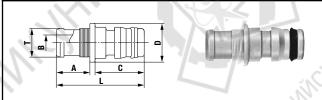
Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products.



Safety Guide: This product can be connected under residual pressure, but do not connect under dynamic pressure applied. It may lead to incomplete connection, deteriorated durability or possible valve fly out. Read without fail and observe the "Instruction sheet" that comes with the product and the following pages in the general Outick Connect Coupling Catalog; [Precautions Relating to the Use of All CUPLA] and "CUPLA for Low Pressure (Water, Liquid) and for Medium Pressure" in the [Safety Guide] page.

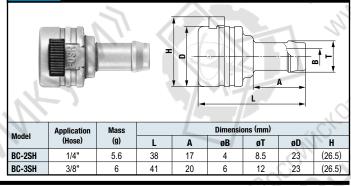
# **PLASTIC CUPLA** BC Type Valveless

# 0 0


- . To connect, just push the plug into the socket.
- Plastic makes this ideal for use in environment prone to rusting.
- · Compact and light weight for easy handling.
- Valveless construction gives more stable flow.

Specifications				- Ali			
Body material	Plastic						
Size	1/4", 3/8" hose						
Pressure unit	MPa	kgf/cm ²	bar	PSI			
Working pressure	0.07	0.7	0.7	10.2			
Seal material	Seal material	Mark	Working temperature range	Remarks			
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +50°C	Standard material			

WAF : WAF stands for width across fla

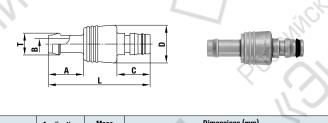

# **Models and Dimensions**

#### Plua PH type (Hose barb)



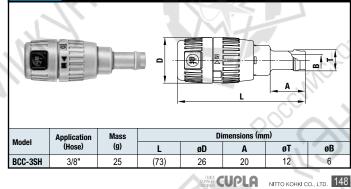
١.		Application	Mass			GY -			
	/lodel	dei (Hose)	(g)	L	C	Α	ØB	ØT	øD
B	BC-2PH	1/4"	1.8	41	19	17	4	8.5	14
В	BC-3PH	3/8"	2	34	19	13	6	10.9	15

#### Socket SH type (Hose barb)




Specifications			X	$\langle \rangle$		
Body material		Pla	istic			
Size	3/8" hose					
Pressure unit	MPa	kgf/cm ²	bar	PSI 🔍		
Working pressure	0.07	0.7	0.7	10.2		
Seal material	Seal material	Mark	Working temperature range	Remarks		
Working temperature range	Nitrile rubber	NBR (SG)	-20°C to +50°C	Standard material		

WAF : WAF stands for width a


# **Models and Dimensions**

#### PH type (Hose barb) Plug



Model	Application	Mass		Dimensions (mm)						
woder	(Hose)	(g)	L	C	A	øD	ØT	øB		
BCV-3PH	3/8"	10	(58)	19	20	21	12	6		

#### SH type (Hose barb) Socket



Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products

# **PLASTIC CUPLA BCC Type with Flow Controller**

For low pressure air piping



- To connect, just push the plug into the socket.
- Plug with built-in automatic shut-off valve.
- Socket with handy flow controller.
- · Plastic makes this ideal for use in environments prone to rusting.
- · Compact and light weight for excellent handling

Before use, please be sure to read "Safety Guide" described at the end of this book and "Instruction Sheet" that comes with the products.

Accessories for CUPLA

Quick Connect Couplings

For plugs

# **DIP MOLD DUST CAP**

Dust caps for HI CUPLA, SP CUPLA Type A, TSP CUPLA, and HYDRAULIC CUPLA

• PVC Dust Caps produced by dip molding are available for HI CUPLA, SP CUPLA Type A, TSP CUPLA, and HYDRAULIC CUPLA. Dust Caps prevent dust from getting inside the fluid line and protects the sealability and life of the O-ring.

For sockets

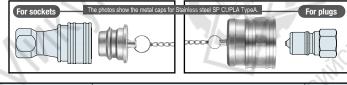
Caution: The function of the cap may be damaged due to fluid adhering to the CUPLA or due to the external environment. Wipe off the fluid from the CUPLA to prevent the fluid from adhering. Cap for SP CUPLA Type A Cap for TSP CUPLA Part number Cap for HI CUPLA Part number Sales unit Part number **Cap for HSP CUPLA** Sale Sales unit Part number Sales unit For 20 type 1 CA96462 For 1S-A CA96542 For 1TS 1 CA96463 For 2HS 1 1 CA96462 CA96476 For 30 type 1 CA96463 For 2S-A 1 CA96462 For 2TS 1 For 3HS 1 For 4HS For 40 type 1 CA96464 For 3S-A 1 CA96463 For 3TS 1 CA96477 1 For 400 type CA96465 For 4S-A 1 CA96464 For 4TS 1 CA96477 For 6HS 1 1 CA96464 For 600 type CA96466 For 6S-A 1 CA96465 For 6TS 1 CA96478 For 66HS 1 1 For 800 type CA96467 For 8S-A 1 CA96479 For 8TS CA96479 For 8HS 1 1 1 For 20 type CA96468 For 10S-A CA96553 For 10TS CA96481 For 10HS 1 1 1 1 CA96453 For 30 type CA96449 For 12S-A CA96555 For 12TS CA96481 For 12HS 1 1 1 1 For 40 type CA96470 For 16S-A CA96557 For 16TS CA96482 For 16HS 1 1 1 1 Plug For 2HP For 400 type 1 CA96453 For 1P-A 1 CA96541 For 1TP 1 1 CA96454 CA96455 For 600 type 1 CA96454 For 2P-A 1 CA96453 For 2TP 1 CA96455 For 3HP 1 For 800 type 1 CA96455 For 3P-A 1 CA96454 For 3TP 1 CA96456 For 4HP 1 CA96456 For 4P-A 1 CA96455 For 4TP CA96456 For 6HP 1 1 Cap for 700R CUPLA CA96457 For 6P-A CA96456 For 6TP CA96471 For 66HP Sales unit 1 1 Part number Pluc 1 Plua Pluo CA96458 For 8P-A CA96551 1 For 8TP CA96472 For 8HP 1 CB00614 For 700R-3S 1 1 CA96459 CA96552 For 10HP For 10P-A 1 For 10TP CA96473 CA82644 For 700R-4S 1 1 1 For 12TP For 12HP CA96460 For 12P-A CA96459 1 CA83164 For 700R-3P 1 1 1 CA96473 Plug For 16P-A For 16TP For 16HP For 700R-4P CA96461 1 CA96556 CA96475 CA82643 1 1 1 Part number Cap for 210 CUPLA Sales unit Cap for 280 CUPLA Sales unit Cap for F35/350 CUPLA Sales unit Cap for ZEROSPILL CUPLA Part number Part number Part number Sale unit For 210-2S For 280-2S For F35-2S For ZEL-2S CB28313 CA96463 CB17082 CA96463 1 1 1 1 For 210-3S For 280-3S For F35/350-3S CA96476 1 CA96476 1 CA81551 CA96464 For ZEL-3S 1 1 For 210-4S For 280-4S 1 CA81555 1 CA81555 1 CA81555 For F35/350-4S CB28786 For ZEL-4S 1 For 210-6S For 280-6S CA96478 1 CA96478 1 For F35/350-6S For ZEL-6S 1 1 CA96466 CA97213 For 210-8S For 280-8S CA96466 CA96466 For F35/350-8S For ZEL-8S 1 1 CA80401 1 CA96467 1 CA96454 For 210-2P CA96453 For 280-2P 1 For F35-2P For ZEL-2P 1 CA96454 1 CA96454 1 For 210-3P 1 CA96455 For 280-3P For F35/350-3P For ZEL-3P CA96455 1 CA81553 1 CB28790 1 For 210-4P 1 CA82643 For 280-4P 1 CA81557 For F35/350-4P CA96456 For ZEL-4P CA82643 Pluc 1 Plua 1 Plug CA96471 For 210-6P 1 CA96471 For 280-6P CA97215 For E35/350-6P CA96457 For ZEL-6P 1 1 1 CA80402 CA96551 For 210-8P 1 CA96551 For 280-8F For F35/350-8P CA96472 For ZEL-8P

	Part number	Cap for HSU CUPLA	Sales unit
	CA96463	For HSU-2S	1
Socket	CA96464	For HSU-3S	1
	CA96465	For HSU-4S	1
	CA96466	For HSU-6S	1
	CA96467	For HSU-8S	1
	CB60672	For HSU-2P	1
	CB60673	For HSU-3P	1
Plug	CB60674	For HSU-4P	1
	CB60675	For HSU-6P	1
	CB60676	For HSU-8P	1

149 NITTO KOHKI CO., LTD. CUPLA DUCK

SAFETY CAP

Metal caps for HI CUPLA Series, SP CUPLA Type A, TSP CUPLA and HYDRAULIC CUPLA (Semi-standard)


- part A.
- Metal Cap equipped with dust-proof and leak prevention function.

Size-adjustable Ring for Dip Mold Cap

nart A.

The ring size can be adjusted by moving the part A.

Caps with metal material corresponding to that of CUPLA body are available.



# Model Model Applicable CUPLA Sales unit Model name of Safety Cap is stated in the following manner. Example: "2S-A-SD" identifies a safety cap for SP CUPLA Type A Model 2S-A. Sockets and plugs for HI CUPLA, SP CUPLA Type A, TSP CUPLA, HSP CUPLA, 210 CUP

When ordering, please indicate Model Name or part number. Semi standard items: As these items are not always in stock, delivery time is subject to confirmation



Accessories for CUPL

PRESSURE GAUGE

Plastic for up to 8S-A

for 10S-A to 16S-A

# **ACCESSORIES FOR AIR LINES**

# Air Line accessories for HI CUPLA series

## Connects directly to 20/30/40 type HI CUPLA sockets.

PG-10P

<ul> <li>Convenient to c</li> </ul>	ontrol drainage a	nd pressure in air lines.	
Part number	Model	CUPLA that accessories can be mounted on	Sales uni
CB23625	DC-30PF	HI CUPLA sockets	1

unit	Description
	DRAIN COCK
1	PRESSURE GAUGE

ß

# EEVE STOPPER

# Sleeve Stopper for SP CUPLA Type A

CB11253

 Sleeve stopper exclusively for SP CUPLA Type A sockets. Attaching the sleeve stopper after connection of socket and plug locks the sleeve of the socket and prevents unexpected disconnection.

	Part number	Stopper for SP CUPLA Type A socket	Applicable CUPLA	Sales unit	Material		Part number	Stopper for SP CUPLA Type A socket	Applicable CUPLA	Sales unit	Material
	CB24350	For 1S-A	Š.	10			CB26456	For 10S-A		1	
	CB24351	For 2S-A	6 🔨 🔥	10			CB26457	For 12S-A		1	
cket	CB24352	For 3S-A	SP CUPLA Type A	10	Engineering	ket	CB26458	For 16S-A	SP CUPLA Type A	1	SUS 304
Soc	CB24353	For 4S-A	sockets	10	plastics (POM)	So		11.	sockets		000 004
	CB24354	For 6S-A	$\sim$	10				X V			
	CB24355	For 8S-A	$\langle \mathbf{O} \rangle$	10	÷						

HI CUPLA sockets

# ACCESSORIES FOR O-RING MAINTENANCE

Jigs & grease for replacement of O-rings for couplings For SP CUPLA Type A, TSP CUPLA, HOT WATER CUPLA, ZEROSPILL CUPLA, HSP CUPLA, HSU CUPLA and HYGIENIC CUPLA

• The seal materials play an important role in maintaining the performance of a coupling. O-rings or seal materials of these CUPLA series are designed to be replaceable. Please be certain to choose the

correct and genuine Nitto kohki O-ring in order to maintain the performance of couplings.

#### **Grease for CUPLA** • GRE-HC1 (Hydrocarbon grease) for NBR, FKM O-ring or packing (Part.No.CB28531) Sales unit: 1 pc.

5mL container

**GRE-M1** (Mineral grease) for NBR, FKM O-ring or packing (Part.No.CB23701) Sales unit: 1 pc



• GRE-S1 (Silicone grease) for NBR, FKM, and EPDM 0-ring or packing Sales unit: 1 pc.

HW-4S-F

CB64218

2

PMJ-1 (Small)

5mL container

DRAIN COCK

Attached to SP CUPLA Type A

Jig for O-ring replacement Model: PMJ-1 (Small) (Part.No.CB23687)

Sales unit: 1 pc.

(Part.No.CB23688)

· Sales unit: 1 pc.

5mL container

Grease for CUPLA

• Model: PMJ-2 (Large)

1

1

## Grease for CUPLA

5mL containe

PMJ-2 (Large)

• GRE-S2 (Silicone grease) for NBR, FKM, and EPDM 0-ring or packing (Part.No.CB28791) • Sales unit: 1 pc. (NSF H1, NSF 61 registered product Standardly applied to CUBE CUPLA

O-ring for	P	art numb	er	Sales		0-ring for	Р	art numb	er	Sales		0-ring for	Part n	umber	Sales	Backup ring	Part number	Sales
SP CUPLA Type A	NBR	FKM	EPDM	unit	Ν	TSP CUPLA	NBR	FKM	EPDM	unit	H	ISP CUPLA	NBR	FKM	unit	for HSP CUPLA	PTFE	unit
For 1S-A	CP01314	CP00907	CP03270	1	1	For 1TS	CP03987	CP04984	CP09795	1		For 2HS	CP01185	CP02215	1	For 2HS	CP01186	11
For 2S-A	CP00927	CP00928	CP03333	1	11	For 2TS	CP01314	CP00907	CP03270	1		For 3HS	CP01194	CP03335	1	For 3HS	CP01195	1
For 3S-A	CP00955	CP00956	CP03276	1	11	For 3TS	CP00927	CP00928	CP03333	1		For 4HS	CP00294	CP02093	1	For 4HS	CP01203	1
For 4S-A	CP00978	CP00979	CP03283	1		For 4TS	CP00955	CP00956	CP03276	1		For 6HS	CP00294	CP02093	1	For 6HS	CP01203	1
For 6S-A	CP01003	CP01004	CP03292	1	11	For 6TS	CP00978	CP00979	CP03283	1		For 66HS	CQ33388	CP25937	1	For 66HS	CP09659	1
For 8S-A	CP01029	CP01030	CP03298	1	0	For 8TS	CP00387	CP01258	CP04923	1		For 8HS	TP00293	CP01179	1	For 8HS	CP01211	1
For 10S-A	CP00398	CP01053	CP07179	1		For 10TS	CP01273	CP01274	CP09221	1		For 10HS	CP01516	CP03371	1	For 10HS	CP01517	1
For 12S-A	CP01076	CP01077	CP03902	S	11	For 12TS	CP00398	CP01053	CP07179	1		For 12HS	CP01516	CP03371	1	For 12HS	CP01517	1
For 16S-A	CP01099	CP01100	CP06953	51	][	For 16TS	CP01304	CP01305	CP09794	1		For 16HS	CP03035	CP03453	1	For 16HS	CP03036	1
O-ring for	P	art numb	er	Sales	n	0-ring for	Part number	Sales	Backup	o ring for	Part nur	nber Sales	0-ri	ng for	Part number	Sales		
ZEROSPILL CUPLA	NBR	FKM	EPDM	unit	Μ	HSU CUPLA	HNBR	unit	HSU	CUPLA	PTF	E unit	HOT WA	TER CUPLA	FKM	unit		2
For ZEL-2S	CQ40611	CQ40740	CQ43755	1		HSU-2S	CQ42490	1	HS	U-2S	CP252	269 1	HW	-2S-F	CB64216	2		
For ZEL-3S	C040628	C040744	C043757	1	11	HSU-3S	C042496	1	C HS	U-3S	C0424	197 1	HW	-3S-F	CB64217	2		

HSU-4S

HSU-6S

HSU-8S

C013520

CQ26486

CP20780

1

1

1

For ZEL-8S	CQ40679	CQ40756	CQ43763	1
0-ring for	Р	art numb	er	Sales
HYGIENIC CUPLA	SI	FKM	EPDM	unit
SEW-1.5P	CB63419	CB63420	CB63421	1
SEW-2.0P	CB62939	CB62940	CB62941	1

CQ40662

CQ40645 CQ40748 CQ43759

CQ40752 CQ43761

1

For ZEL-4S

For ZEL-6S

151 NITTO KOHKI CO., LTD.

e page 172 for replacement of the O-ring.

CQ42502

CQ43482

CQ43489

1

1

1

HSU-4S

HSU-6S

HSU-8S

When ordering, please indicate Model Name or part number

## Accessories for CUPLA

The photos show the jigs for HSP CUPL

Sales unit

1 pc.

For sockets

Attachable CUPLA

Sockets and plugs for SP CUPLA Type A, HSP CUPLA,

210 CUPLA, S210 CUPLA, 280 CUPLA and 350 CUPLA

# **RESIDUAL PRESSURE RELEASE JIG**

Residual Pressure Release Metal Jig for SP CUPLA Type A and HYDRAULIC CUPLA (Semi-standard)

- · Residual pressure within socket or plug can be released easily by just turning the handle.
- Residual pressure release jigs are available in two types; socket type for use with plugs and plug type for use with sockets.
- · Connection to sockets or plugs is the same as connection of normal CUPLA. Mode

The model name is to be defined in the following manner.

# Z N – Type of CUPLA to be attached

Residual pressure release jig

Caution: Since the upper limit of residual pressure that can be relieved depends on the product, please contact us separately

# **CUPLA ADAPTER** for Braided Hose Connection Mounts on CUPLA plug / socket with female thread

- Adapter for CUPLA with female thread such as ZEROSPILL CUPLA and SP CUPLA Type A.
- No hose clamp is required resulting in reduced risk of injuries to fingers or palms.
- Deterioration of the braided hose at the hose barb part has been eliminated.
- · Unique nut construction increases the pulling load of braided hoses.
- · Simply push a braided hose onto the hose barb to the end and tighten the nut until it is flush against the hose barb base.
- No inner parts for conventional braided hose fittings are required. Thus incorrect assembling does not occur.

A tool and a hose clamp are not required.

Not Required

## Please use braided hoses available in the market.

Specifications			$\sim$	
Body material		Bra	ass	
Model	BH90-3M	BH120-4M	BH150-4M	BH190-6M
Size (Thread)	3/8"	1/2"	1/2"	3/4"
Braided hose size	ø9 x ø15 mm	ø12 x ø18 mm	ø15 x ø22 mm	ø19 x ø26 mm
Working pressure *1	Depends u	upon the specification	ns of braided hoses t	to be used.
Working temperature range *1	Depends u	upon the specification	ns of braided hoses	to be used.
Applicable fluids *2		Air, Wa	ater, Oil	.0
		<u> </u>		

Maximum Tightening To	~	Vm {kgf∙cm}		
Model	BH90-3M	BH120-4M	BH150-4M	BH190-6M
Torque (Taper Pipe Threads) *3,4	12 {122}	30 {306}	30 {306}	50 {510}

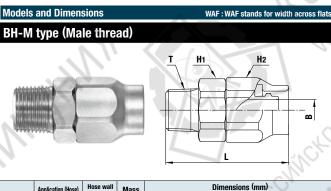
*1 : Max working pressure and working temperature depend upon the specifications of braided hoses to be used

*3 Use within the specification of the seal material and the braided hose to be used.
*3 Stress corrosion crack may happen if they are used under corrosive environment. Take note of usage conditional stress are used.
*4 Tighten the nut until it is flush against the hose barb base after pushing a braided hose to the end.

· Braided hoses should be made of soft PVC and woven by reinforcement thread

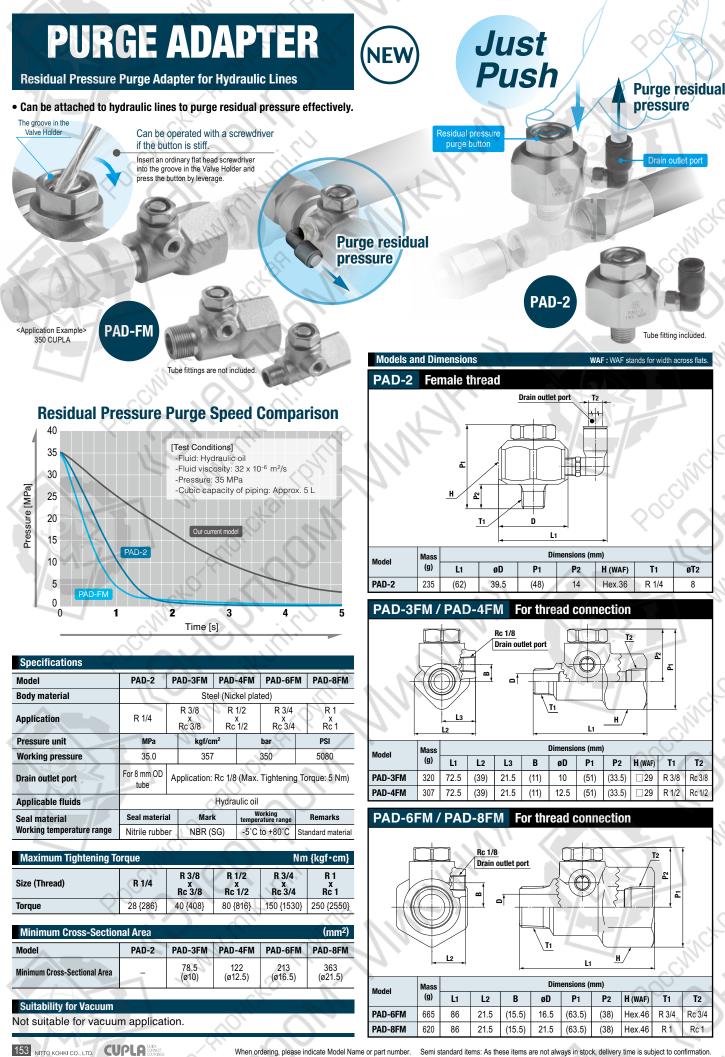
# Application Example

For plugs


**Example: For the CUPLA** 

model 350-3S,

the jig name would be ZN-350-3S


Can be mounted on the plug and socket of ZEROSPILL CUPLA.

# **Benefits without a hose clamp**



	Application (Hose)	Hose wall	Mass		Dir	nensions (m	m)	
Model	(mm)	thickness (mm)	(g)	L	H1 (WAF)	H2 (WAF)	ST .	øB
BH90-3M	ø9 x ø15	3±0.3	106	(49)	Hex.23	Hex.24	R 3/8	8.5
BH120-4M	ø12 x ø18	3±0.3	159	(59)	Hex.27	Hex.27	R 1/2	11
BH150-4M	ø15 x ø22	3.5±0.35	210	(67)	Hex.30	Hex.30	R 1/2	13
BH190-6M	ø19 x ø26	3.5±0.35	301	(74)	Hex.35	Hex.35	R 3/4	17



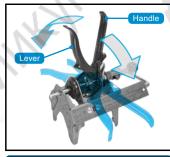


When ordering, please indicate Model Name or part number. Semi standard items: As these items are not always in stock, delivery time is subject to confirmation

# **CUPLA CONNECTING JIG**

**Connecting Jig for large CUPLA** 

· Smooth and easy connection of large CUPLA by operating a lever.




The photo shows SP CUPLA Type A / 16SP-A (Rc2)

# Versatile

Corresponds to all applicable models¹ by adjusting the body length.


*1: Standard CUPLA appearing in the CUPLA general catalog (two-way shut-off valve). Except MULTI CUPLA series. See below list of applicable models.



### Functional

The Handle can be used at any angle to prevent interference with the CUPLA.

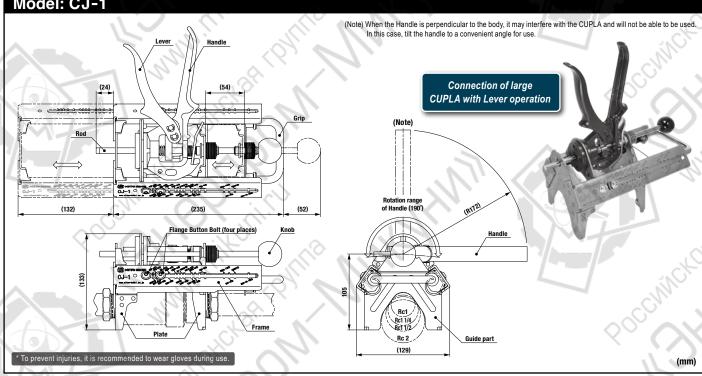
List of Applicable Models





#### Safe

If excessive force occurs during connection, the safety device prevents damage to the body. When the safety device is activated, the connection of the CUPLA is disabled.


Applicable models		Size (1	Thread)	
Applicable models	Rc 1	Rc 1 1/4	Rc 1 1/2	Rc 2
SP CUPLA Type A	8SP-A	10SP-A	12SP-A	16SP-A
ZEROSPILL CUPLA	ZEL-8SP	/	-	10
HSP CUPLA	8HSP	10HSP	12HSP	16HSP
210 CUPLA	210-8SP	-		V -
HSU CUPLA	HSU-8SP	-		
S210 CUPLA	S210-8SP	-	$\sim \odot$	$\sim$
280 CUPLA	280-8SP	-	X- (	$\sim$
350 CUPLA	350-8SP	350-10SP	350-12SP	· /- ) `
FLAT FACE CUPLA F35	F35-8SP	-		
FLAT FACE CUPLA FF	FF-8SP	-	- 1	-
SEMICON CUPLA SP Type	8SP-304		-	
SEMICON CUPLA SCS Type	SCS-8SP			0
SEMICON CUPLA SCY Type	SCY-8SP			-10
SEMICON CUPLA SCT Type	SCT-8SP	AX		-
SEMICON CUPLA SCAL Type	SCAL-8SP		SCAL-12SP	-

Specifications	
Model	CJ-1 (?)
Body material	Stainless steel (SUS430), Aluminum alloy
Applicable CUPLA	See list on the right
Connection under residue pressure	Not possible
Working temperature	Normal temperature
Storage Temperature Range	-20°C to +60°C
Mass	1.85 kg
Accessories	4 mm Hexagon wrench, Operation procedure tag, Cable tie

Prior to use, confirm the CUPLA to be connected and adjust it according to the model and size. (See instructions for the adjusting procedures provided with the product)

## Models and Dimensions

# Model: CJ-1



# Seal Material Selection Table for Reference

For seal parts in the CUPLA (the important parts that prevent leaking to the outside), it is important to select the most appropriate seal material to suit the property and temperature of the fluid. It is so important that wrong selection may not only completely malfunction the CUPLA but also cause an unexpected accident.

When the fluid in question is not listed in "Seal Material Selection Table (For reference)," the seal material that you select should be tested under actual environment. Even if the fluid is stated in the following list, the test could be required in some cases

Ť		Ó	177	Sea	al Mat	erial							Sea	al Mate	erial		
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber		Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene
2	2,2-Dimethyl-butane	0	0	×	0	0	×	A	В	Butadiene	×	×	×	0	0	×	>
	2,3-Dimethyl-butane	O	0	×	0	0	×	$\bigtriangleup$	4.1	Butane	0	0	×	0	0	×	4
	2,4-Dimethyl-pentane	0	0	×	0	0	×	×		Butane (liquid)	0		×	0		×	
	2-Methyl-pentane	0	0	×	0	0	×	×		Butanol (Butyl alcohol)	0	0	0	0	0	0	(
3	3-Methyl-pentane	0	0	×	0	0	×	×		Butter and butter oil	0	0	0	0	0	0	
4	Acetaldehyde			0	×		0			Butyl acetate	×	×	0	×	0	×	
9	Acetic acid	0	0	0		0		0		Butyl stearate	0	0	×	0	0	×	T
	Acetic anhydride		×	0	×	0	0	0		Butylaldehyde	×	×	0	×	0	×	
	Acetone	×	×	0	×	0	×	×		Butylene	0	0	×	0	0	×	C
	Acetonitrile	X	R	×		0	×	×		Cadmium cyanide			0		0	0	-
		$\hat{\mathbf{x}}$			×		×		C		-		0	1000			+
	Acetophenone		×	_	_			×		Calcium acetate	0		-	X	0	×	
	Acetyl chloride	×	×	X	0	0	×	×		Calcium acetate (65°C)	0	1	0	×	0	×	
	Acetylacetone	×	×	0	×	0	×	×		Calcium carbide		-	2	22	0		_
	Acetylene	0	0	0	0	0	0	0		Calcium carbonate	0	0	0	0	0	0	
	Air (50°C)	0	0	0	0	0	0	0		Calcium hydroxide	0	0	O	0	0	0	
	Aluminium bromide	0	0	O	0	0	0	O	4.	Calcium nitrate (65°C)	0	$\mathbb{N}$	0	0	O	0	
	Aluminium chloride	0	O	O	O	O	0	O		Calcium perchlorate	×		$\times$	×		×	
	Aluminium nitrate	O	O	0	O	0	0	O		Calcium sulfate		$\bigtriangleup$	O		O	0	5
	Aluminium sulfate	0	0	O	0	0	0	0		Calcium sulfate (65°C)	×		O		O	0	5
	Amine mixture	×	×	0	×	×	0	0		Calcium sulfite	O	0	O	0	O	O	
	Ammonia (anhydrous)	0	0	O	×	0	0	O		Carbitol	0	0	0	0	0	0	P
	Ammonia (Liquid) (65°C)			2	×	0				Carbon dioxide gas (65°C)	0		0	0		0	
	Ammonia (Liquid) (Cool)		~	0	×	0	0	0		Carbon disulfide	×	×	×	0	0	×	
	Ammonia gas (Low temperature)	0	0	0	×	0	0	$\bigcirc$		Carbon monoxide (65°C)	0	0	O	0	0	0	F
	Ammonium carbonate	×	×	0	0	0	×	0		Carbon tetrachloride	0	0	×	0	0	×	t
	Ammonium chloride	0	0	0	0	0	×	0		Castor oil	0	0	0	0	0	0	t
	Ammonium hydroxide	×	×	0	×	×	0	$\triangle$		Chlorine (liquid)	×	1	×	×	0	×	t
	Ammonium magnesium sulfate	×	$\bigcirc$	×	×	1	×	×		Chlorine gas	0	0	×	0	0	×	t
	Ammonium nitrate (65°C)	0	0	0			0	0		Chlorine water			0	0	0	×	t
	Ammonium phosphate (65°C)	0		0	×	0	0	0		Chloroacetone		×	0	×	0	×	+
	Ammonium sulfate	0	0	0	×	0	0	0		Chlorobenzene	×	×	×	0	0	×	+
	11			0		0	0	0		Chloroform	×	1	×	0	0	×	+
	Ammonium sulfite			-			1 1 1 1	-			_	X	-				-
	Ammonium thiosulfate		-	Ô		0		0		Chlorophenol	×	×	×	0	0	×	ł
	Amyl acetate	X	×		X	0	×	×		Chromium hydroxide					0	2	+
	Amyl alcohol	0	0	0	0	0	×	0		Coconut oil	0	0		0	0	0	1
	Aniline	×	×	0		0	×	×		Cod liver oil	0		O	0	0	0	_
	Animal oil (Lard)	0	0	0	0	0	0	0		Coffee	0		×	×		×	
	Arsenic trichloride		2	×	×	0	×	×		Copper chloride	0	0	O	0	0	0	
	Asphalt	0	0	×	O	O	×	×		Copper cyanide	0	0	O	0	0	O	
	Barium chloride	O	0	O	O	O	O	O		Copper sulfate	0	0	O	0	0	0	
	Barium hydroxide	0	0	O	O	0	O	O		Corn oil	O	0		O	O	O	
	Barium nitrate			O		O	0	$\bigcirc$		Cotton seed oil	O	O	$\bigtriangleup$	O	O	O	
	Barium sulfate (65°C)	O	K	0	O	O	O	$\odot$		Cresol (50°C)	×	×	×	0	$\bigcirc$	×	
	Barium sulfide	0	0	O	0	0	0	O		Crude oil	0	0	×	0	O	×	
	Beer	0	0	0	0	0	0	O		Cyclohexane	0	0	×	0	0	×	Γ
	Benzaldehyde	×	×	0	×	0	0	×		Cyclohexanol	0	0	×	0	0	×	
	Benzene	×	×	×	0	0	×	×	D	Developer	0	0	0	0	0	0	1
	Benzyl alcohol	×	×	0	0	0		0		Diacetone alcohol	×	×	0	×	0	×	ł
	Benzyl chloride	×	×	×	0	0	×	×		Dibenzyl ether	×	×	0	×	0	×	f
	Brake oil			0	×	0		0		Dichlorophenol	0	0	×	0	0	×	1
		×	×	×			×	×		Diesel oil	0		×	0	0	×	
	Bromine	-				0		·				-		-			+
ſ	Bromine water	×	×	×	O	O	×	$\times$		Diethanolamine			O		O	0	

155 NITTO KOHKI CO., LTD. CUPLA DURX

# Seal Material Selection Table for Reference



Note: Contact us when the space is blank.

O Practically no harm, and can be used (Excellent) 
 the selection
 Some harm may be inevitable but can be used under restrictions (Good)

 tables
 Should be avoided if at all possible (Not recommended)

 × Should not be used (Unsuitable)

Note: When selecting the seal material, please consider the following suggestions carefully: 1. If there is no comment in the column of the fluid name, the condition of the fluid is under saturation at room temperature. Please check with us for applications at a high fluid temperature or with different fluid concentrations.
 For applications related to foods, please order separately specifing the detailed applications.

11				Sea	I Mate	erial		
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
D	Diethylene glycol	0	0	O	O	O	0	O
Е	Ethanol (Ethyl alcohol)	$\bigtriangleup$	$\triangle$	O	$\bigtriangleup$	0	0	O
	Ethyl acetate	×	1	0	×	1	0	×
	Ethyl benzene	×	×	×	0	0	×	×
	Ethyl cellulose	0	0	0	×	O	0	0
	Ethyl chloride	O	O	$\bigtriangleup$	0	O	×	×
	Ethylene glycol	O	O	0	O	O	0	O
	Ethylene trichloride	×	X		0	0	×	×
F	Ferric sulfate	O	0	0	0	0		O
	Fish oil	0	0	×	O	0	O	×
	Fluorine (Gas)	×		×	×	0	×	×
	Formic aldehyde	$\bigtriangleup$		0	×	O	0	$\bigtriangleup$
	Freon 11	0	×	×	0	0	×	×
	Freon 12	O	0	$\bigtriangleup$	$\bigtriangleup$	0	×	O
	Freon 22	×	×		×	O	×	O
	Fuel oil	0	0	×	O	O	×	0
	Furfural	×	×	0	×	O	×	×
G	Gasoline	O	O	×	O	O	×	×
	Gelatin	O	O	O	0	0	0	O
	Glucose	O	O	0	O	O	O	O
	Glycerine (65°C)	O	O	0	O	O	O	O
0	Grease (Petroleum-based)	O	0	×	O	O	×	×
H	Helium	O	O	0	O	O	O	O
	Heptane (n-heptane)	0	0	×	0	0	×	0
	Hexane (n-hexane)	O	O	×	O	O	×	0
	Hexylene glycol	$\bigtriangleup$	$\triangle$	O	$\square$	0	0	O
	Hydraulic oil (Petroleum-based)	0	0	×	O	0	0	×
	Hydraulic oil (Phosphate ester series)	×	×	0	O	0		×
	Hydraulic oil (Synthetically-prepared)	0	0	×	0	0		×
	Hydraulic oil (Water-glycol series)	O	O	0	0	O	0	O
	Hydraulic oil (Water-in-oil emulsion series)	O	0	×	O	0		×
	Hydrobromic acid	×	×	O	O	0	×	×
	Hydrogen	O	0	0	O	O		O
	Hydrogen peroxide (30%)	×			O	· · ·	O	×
L	Iron chloride	O		0	0		0	O
	Iron nitrate (65°C)	O		0	O	-	0	O
	Iron sulfite (100%)	0	0	×	×		×	×
	Isoamyl alcohol	×	1	×	×		×	×
	Isooctane	0	0	×	0	0	×	0
	Isopropanol	0	0	0	O	0	0	0
	Isopropyl acetate	×	×	0	×	0	×	×
	Isopropyl alcohol	0	0	0	0	O	0	0
	Isopropyl ether	0	0	×	×	0	×	×
K	Kerosene	O	O	×	0	0	×	0
L	Lard and lard oil	0	0	0	0	0	0	0
	Latex	×	0	×	×	5	×	×
	Liquefied petroleum gas (LPG)	0	0	×	0	O		×
	Liquors (beet)	O	O	O	0	0	0	0
	Lubricating oil (SAE 10, 20, 30, 40, 50)	0	O	×	0	0	×	×
	Magnesium chloride	$\bigcirc$	0	O	O	O	O	O
М			-	1		-	-	

			X	Sea	I Mate	erial		1
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
1	Magnesium sulfate	0		0	0	0	O	0
	Maleic anhydride	×	×	0	×	0	×	×
	Mercury	0	0	0	0	0	×	O
	Methanol	×	×	0	×	0	0	0
	Methyl bromide	0	0	×	0	0	×	×
	Methyl butyl ketone	×	×	0	×	0	×	×
	Methyl chloride	×	×		0	0	×	×
	Methyl ethyl ketone (MEK)	×	×	0	×	0	×	×
	Methyl isobutyl ketone (MIBK)	×	×		×	0	×	×
	Methyl propyl ketone	×		0	×	-	×	×
	Methyl salicylate	×	×	0	×	0	×	
	Methylene bromide	×	8	×	0	0	×	×
	Methylene chloride	×		X	0	0	×	×
	Milk		0	0	0	0	0	0
	Mineral oil	0	0	×	0	0		
Ľ		-				-		
	Monobromobenzene	×		×	0	0	×	×
	Monochlorobenzene	×	×	×	0	0	×	×
	Monoethanolamine (MEA)	×	×	0	×	0	0	×
I	n-amyl alcohol	×		×	×	-C	×	×
	Naphtha	0	0	×	0	0	×	×
	Naphthalene	×	×	×	0	0	×	×
	Naphthenic oil	0		×	0		×	×
	n-butyl alcohol	×		×	×		×	×
	Nickel acetate	0	0	O	×	0	×	0
	Nickel acetate (65°C)	×		O	×		×	×
	Nickel ammonium sulfate		1	O	$\triangle$	0	0	0
	Nickel chloride	O	0	0	O		$\bigcirc$	$\bigcirc$
	Nickel nitrate			O		O	0	$\bigcirc$
	Nickel sulfate	0	0	0	0	0	O	0
4	Nitrobenzene	×	×		0	0	×	×
	Nitrogen (gas)	0	0	0	0	O	O	O
)	Octyl alcohol	0	0		0	O	0	0
	Oleic acid			×	0	0	×	×
	Olive oil	0	0	0	0	0	$\bigtriangleup$	×
	Ortho-dichlorobenzene	×	×	×	0	0	×	×
	Oxygen (gas)	0	0	0	0	0	0	0
	Ozone	×		0	0	0	0	×
,	Palm oil	×		×	×		×	×
	Paradichlorobenzene	×	×	×	0	0	×	×
	Paraffin oil	0	0	×	0	0	×	×
	Peanut oil	0	2		0		0	0
		0	0	×	0	0	×	0
	Pentane (n-pentane) Phenol	×	×	×	0	0	×	×
			Ŕ		0			0
1	Phosphorous oxychloride (dry) Phosphorous oxychloride (wet)	0		0	_		0	
	Phosphorous oxychloride (wet)	0		0	0		0	0 ×
	Phosphorus	×		X	×	0	×	X
	Pine oil	0	0	X	0	0	×	×
	Potassium acetate (65°C)	0	0	0	×	0	×	0
	Potassium aluminium sulfate			0		0	0	0
	Potassium bicarbonate			0		0	0	0
	Potassium bichromate	0		0	0	0	0	0
	Potassium carbonate			O		O	0	0

C

# Seal Material Selection Table for Reference

Ť.		á	~~	Sea	I Mate	erial	_	
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
PI	Potassium cyanide	0	0	O	O	0	0	0
	Potassium hydroxide (50%)	0	0	0	×	0		0
	Potassium hyposulfite	0	6	0	O		O	0
	Potassium nitrate	0	0	O	O	O	0	0
	Potassium nitrite			0		0	0	0
1	Potassium phosphate			0		0	0	0
	Potassium silicate	0	0	0	O	0	×	O
	Potassium sulfate	O	O	O	O	O	O	0
1	Potassium thiosulfate		$\triangle$	O	$\triangle$	O	0	O
	Propane	O	O	×	O	O	×	0
1	Propionaldehyde			O	$\bigtriangleup$	O	0	O
	Propionitrile	O	O	×	O	O	O	0
ľ	Propyl acetate	×	×	0	×	0	×	×
1	Propyl alcohol	0	0	0	0	O	0	O
1	Propylene			×	0	0	×	×
1	Pyridine	×		0	×	O	×	×
1	Rosin oil	0		×	×		×	×
; ;	Secondary butyl alcohol	0	0	0	O	0	0	0
	Soapy water (65°C)	0	0	O	0	0	0	0
•	Sodium acetate	0	0	O	×	0	×	0
	Sodium aluminate			0		0	0	0
	Sodium bicarbonate	0	0	0	0	0	0	0
	Sodium bichromate			0		0	0	0
	Sodium carbonate	0	0	O	$\odot$	0	0	0
	Sodium chloride	0	0	0	O	0	0	0
	Sodium chloride (salt water)	0	0	0	O	0	O	0
	Sodium cyanide	0	0	O	O	0	0	0
:	Sodium hydroxide (Caustic Soda)			0		0	0	0
	Sodium hypochlorite (1%)	0	0	0	0	0	0	0
	Sodium hyposulfite			0		0	0	0
	Sodium iodide			0		0	0	0
	Sodium metaphosphate	0	O	0	O	0	×	0
	Sodium nitrate		20	0		0	×	0
	Sodium nitrite	0	0	0	×	0	×	0
-	Sodium perborate	0	0	0	0	0	0	0
	Sodium peroxide	0	0	0	O	0	×	0
	Sodium phosphate	0	0	0	0	0	×	0
	Sodium plumbate			0	$\triangle$	O	0	0
	Sodium pyrosulfate	0	0	0	0	0	0	0
	Sodium silicate (Water glass)	0	0	O	O	0	×	0
:	Sodium sulfate	0	0	O	0	0	0	0
	Sodium sulfide	0	0	0	O	O	0	0
	Sodium sulfite	0	0	0	0	O	0	0
	Spindle oil	0	0	×	0	0		×
	Starch	0		0	0		0	0
:	Steam (100°C)	×	×	0	0	0	×	×
H	Styrene monomer	×	×	×	0	0	×	×
	Sucrose solution	0	0	0	0	0	O	0
74	Sulfur	×	×	0	0	0	0	0
-	Sulfur chloride (dry)	×	×	×	0	0		×
	Sulfur dioxide	×	×	0	×	0	0	×

				Sea	I Mat	erial		
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene ruhher
s	yrúp	0	D/	- 1	1			
Т	ertiary butyl alcohol	0	0	0	O	O	0	0
Т	etrachloroethylene	×	×	×	0	O	×	×
Т	etraethyl lead	0	0	×	0	O	×	×
Т	etralin	×	×	×	0	O	$\bigtriangleup$	×
	itanium terachloride	0		×	0	O	×	×
	oluene (Toluol)	×	×	×		O	×	×
	riethanolamine			0	×	O	×	0
	riphenyl phosphite	×		0	×		×	×
	ung oil	0	0	×	0	0	×	0
	'inyl acetate	×		0	×	0	×	0
	'inyl chloride	0	0	×	0	0	0	×
	Vater	0	0	0	0	0	0	0
	Vhisky		0	0	0	0	0	0
		×	×	×	0	0	×	×
-	ylene			× O	0	0	× ©	× 0
	inc sulfate		0	0	0	0	0	0
-				9				
F							3	
F					-	00		
F						5		
F							11	
F								
F	-							
							1	
			1	$\leq $	$\leq$			
				$\overline{\mathbf{A}}$				
	L.		»/A			<u></u>		
					l			
	1		-	-				
							1	N.
							S.	
					-	00	2	-
L						$\leq$	- (	
┝							N	-
F							1	
$\vdash$		_			-			
H	11						1	
$\vdash$			1		5			
$\vdash$			1	4	2		-	
$\vdash$							-	
H	1-7				1			
			1					
F	<b>A</b>		4					203
F	•						2	4
F							5	
F					<	60		
F						5	-	
							11	-

an i

157 NITTO KOHKI CO., LTD. CUPLA DURK

# **Body Material Selection Table**

The selection of appropriate body material for the CUPLA is closely related to its usage application, the type of fluid run through, its concentration (%), the pressure, its working environment, etc. So the material must be carefully considered in order to use the CUPLA efficiently and obtain its full performance. Since there are some body materials that should not be used with certain fluids, please refer to this table when making your selection.

○:Suitable  $\triangle$  :Not suitable under certain conditions

×:Unsuitable

Fluids	Brass Stail	eel Steel	Aluminun	n Polypropylene	Fluids	Brass	Stainless Steel	Steel	Aluminum	Poly
A Acetic acid	×		×	$\bigtriangleup$	H Hexane	0	0	4	0	
Acetic anhydride	×		$\bigtriangleup$	0	Hydrobromic acid		×	L	×	
Acetone		0	0		Hydrochloric acid	×	×	×	×	
Air	0 0	0	0	0	Hydrofluoric acid	$\bigtriangleup$	×	1	×	
Aluminum fluoride	0	<	10	0	Hydrogen	$\bigcirc$	0	0	0	2
Aluminum chloride	X	< 0	×	0	Hydrogen peroxide	×	$\bigcirc$		-CV	1
Aluminum sulfate	X	D JO		0	Hydrogen sulfide	$\bigtriangleup$	$\bigtriangleup$	~	0	
Ammonia	× (	D. C	×	0	Industrial water	$\bigcirc$	$\bigcirc$	$\bigtriangleup$	Ĭ (	
Ammonium nitrate	×			0	J Jet fuel		$\bigcirc$	$\bigtriangleup$	11	
Ammonium phosphate			×	0	L Lactic acid	×	0		×	
Ammonium sulfate			0	0	Liquefied petroleum gas (LPG)	0	0	0	0	
Aniline	X (		0	$\bigtriangleup$	M Magnesium chloride	×	×		$\triangle$	
Arsenic acid		$\sim$ .	$\langle \Delta \rangle$	0	Mercury	×	0	0		
Barium chloride	×	×	1.	0	Methyl alcohol	0	0	0	0	
Barium hydroxide	X	D. D	×	0	N Naphtha	0	0	0	0	
Barium sulfide		0 0			Naphthalene	0	0	0	0	
Beer	0		0	0	Natural gas	0	0	0	0	1
Benzene	X		<0		Nickel chloride	×	×	1	10	2
Benzine	0 (		0		Nitric acid	×	$\bigtriangleup$		X	
Boric acid		D to	×	0	Nitrobenzene	$\bigtriangleup$	0	0	$\circ$	
Butane	0 (	- <u>_</u>	2	50	O Octane				- N	7
Butyl acetate	0	<u>)</u>	0	$\bigtriangleup$	Oxygen	0	0	0	1	2
Calcium chloride	- AC			0	P Paraffin	0	0	0		
Calcium hydroxide	0		×	0	Phenol		0			
Carbon dioxide	0		0	0	Phosphoric acid	×	0		×	
Carbon disulfide			S	×	Potassium chloride	$\bigtriangleup$		22	×	
Carbon tetrachloride			×	×	Potassium hydroxide	$\bigtriangleup$	0		×	
Carbonic acid			0	0	Pure water	$\bigtriangleup$	0	1		
Chlorine				×	R Refined gasoline	0	0	0	0	
Chromic acid	X	<	×	×	Refined petroleum	0	0	0	0	1
Citric acid					S Salt water	×	$\bigtriangleup$	×	×	2
Cresol acid	0 0	$ \rightarrow $		0	Sodium carbonate	0	0	0		
Diesel fuel	0 0	10	0	$\bigtriangleup$	Sodium chloride	$\triangle$	$\triangle$	×	€×7	
Dowtherm	(	. XV	Š	3	Sodium hydroxide (Caustic soda)		$\bigtriangleup$		×	1
Drinking water			$\bigcirc$	0	Sodium nitrate	$\bigtriangleup$	0	0	1	
Ethanol	0		0	0	Sodium phosphate			Ŭ		
Ether			0	$\bigtriangleup$	Sodium sulfate	0	0	0	0	
Ethyl acetate				$\bigtriangleup$	Sulfuric acid	×	×	×	×	
Ethylene chloride			S		Sulfurous acid	×		2		
Ethylene glycol			0	0	T Tannic acid	×	0			
Fatty acid			$\bigcirc$	XX	W Wine	0	0	1	0	
Ferric chloride			×	Ô	Z Zinc chloride	×				
Ferric sulfate	10.	2	(A)	0						R
	De.								C.V	0
Formaldehyde 40%				0					S.	
Formic acid	×		×		Notes: 1. Since fluid concentrat performance, detailed					

# Unit Conversion Tables

Unit Conversion Tables													
m	cm		, C ft	yd	km	mile	n-mile						
1	1 x 10 ²	3.937 x 10	3.281	1.094	1	6.214 x 10 ⁻¹	5.400 x 10						
1 x 10 ⁻²	1	3.937 x 10 ⁻¹	3.281 x 10 ⁻²	1.094 x 10 ⁻²	1.6093	1.	8.690 x 10						
2.54 x 10 ⁻²	2.540		8.333 x 10 ⁻²	2.778 x 10 ⁻²	1.852	1.151	1						
3.048 x 10 ⁻¹	3.048 x 10	1.2 x 10		3.333 x 10 ⁻¹									
3.040 X 10													

Area		O _L	100							
m²	in ²	ft2	yd ²	km²	acre	mile ²	ha			
1	1.550 x 10 ³	1.076 x 10	1.196	1	2.471 x 10 ²	3.861 x 10 ⁻¹	1.00 x 10 ²			
6.452 x 10 ⁻⁴	1.0	6.944 x 10 ⁻³	7.716 x 10 ⁻⁴	4.046 x 10 ⁻³	1 I	1.562 x 10 ⁻³	4.047 x 10 ⁻¹			
9.290 x 10 ⁻²	1.44 x 10 ²	1	1.111 x 10 ⁻¹	2.590	6.40 x 10 ²		2.590 x 10 ²			
8.361 x 10 ⁻¹	1.296 x 10 ³	9	1	1 x 10-2	2.471	3.861 x 10 ⁻³				

# Mass (Weight)

kg	gr Juli	OZ	lb	t (metric ton)	Itn (long ton)	stn (short ton)
1	1.5432 x 10 ⁴	3.527 x 10	2.205	1 x 10 ⁻³	9.842 x 10 ⁻⁴	1.102 x 10 ⁻³
6.480 x 10 ⁻⁵	1	2.286 x 10 ⁻³	1.429 x 10 ⁻⁴	6.480 x 10 ⁻⁸	6.378 x 10⁻ ⁸	7.143 x 10 ⁻⁸
2.835 x 10 ⁻²	4.375 x 10 ²	1	6.25 x 10 ⁻²	2.835 x 10 ⁻⁵	2.790 x 10⁻⁵	3.125 x 10 ⁻⁵
4.536 x 10 ⁻¹	7.000 x 10 ³	1.6 x 10	1	4.536 x 10 ⁻⁴	4.464 x 10 ⁻⁴	5 x 10 ⁻⁴
1.000 x 10 ³	1.543 x 10 ⁷	3.5274 x 10 ⁴	2.205 x 10 ³	1	9.842 x 10 ⁻¹	1.102
1.016 x 10 ³	1.568 x 10 ⁷	3.5840 x 10 ⁴	2.240 x 10 ³	1.016		1.12
9.072 x 10 ²	1.4 x 10 ⁷	3.2000 x 10 ⁴	2.000 x 10 ³	9.072 x 10 ⁻¹	8.929 x 10 ⁻¹	1

FUICE			
N	kgf	lbf	pdl
	1.020 x 10 ⁻¹	2.248 x 10 ⁻¹	7.233
9.807		2.205	7.093 x 10
4.448	4.536 x 10 ⁻¹	1	3.217 x 10
1.383 x 10 ⁻¹	1.410 x 10 ⁻²	3.108 x 10 ⁻²	1

Flessul	e	$\circ$					
MPa	kgf/cm ²	lbf/in² (PSI)	atm	mmHg	inHg	mmH ₂ 0	ftH ₂ 0
1	1.020 x 10	1.450 x 10 ²	9.869	7.501 x 10 ³	2.953 x 10 ²	1.01972 x 10⁵	3.346 x 10 ²
9.807 x 10 ⁻²		1.422 x 10	9.678 x 10 ⁻¹	7.356 x 10 ²	2.896 x 10	1.0000 x 10 ⁴	3.281 x 10
6.895 x 10 ⁻³	7.031 x 10 ⁻²		6.805 x 10 ⁻²	5.172 x 10	2.036	7.031 x 10 ²	2.307
1.013 x 10 ⁻¹	1.033	1.470 x 10		7.60 x 10 ²	2.992 x 10	1.0332 x 10 ⁴	3.390 x 10
1.333 x 10 ⁻⁴	1.360 x 10 ⁻³	1.934 x 10 ⁻²	1.316 x 10 ⁻³	1	3.937 x 10 ⁻²	1.360 x 10	4.460 x 10 ⁻²
3.386 x 10 ⁻³	3.453 x 10 ⁻²	4.912 x 10 ⁻¹	3.342 x 10 ⁻²	2.54 x 10	1	3.453 x 10 ²	1.133
9.806 x 10 ⁻⁶	1 x 10⁴	1.422 x 10 ⁻³	9.678 x 10 ⁻⁵	7.356 x 10 ⁻²	2.896 x 10 ⁻³	1	3.281 x 10 ⁻³
2.989 x 10 ⁻³	3.048 x 10 ⁻²	4.335 x 10 ⁻¹	2.950 x 10 ⁻²	2.242 x 10	8.827 x 10 ⁻¹	3.048 x 10 ²	

# **CUPLA Inquiry Form**

If you are unable to find a CUPLA that you are looking for, or the type that suits your particular requirements in this catalog, please fill in this form and fax it to our distributor in your country or directly to us. We will select the most suitable CUPLA for your applications and contact you directly or through our distributor.

# **FAX** Sheet

# To NITTO KOHKI CO., LTD.

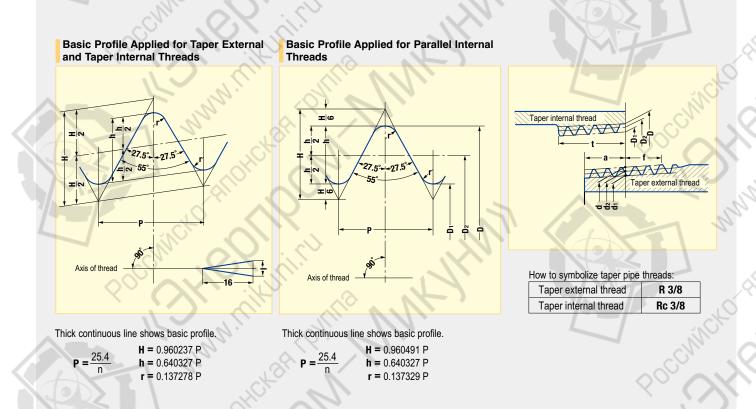
Company Name	C. I	Factory / Branch	
Department / Section	K S	Full Name	
Address	all Nr.	TEL	
E-mail	8. O.	FAX	

# **CUPLA Usage Conditions**

Application	(Product / Machinery) Name ( ) Quantity to Be Used ( )	) pieces
Size	( ) Standard or Code to be conformed with, if any ( ) Location Indoors • Outdoors	P
Product Name	HI CUPLA • SUPER CUPLA • MOLD CUPLA • SP CUPLA TYPE A • HSP • 350 • TSP • MINI CUPLA • Others (	)
Body Material	( ) Seal Material (	)
Surface Treatment	( ) Connection Disconnection Frequency ( ) times / day • ( ) times	/ month
Valve	Socket (with • without ) Plug (with • without )	
Fluid	Air • Water • Oil • Steam (Others:	)
Pressure	Maximum ( ) MPa Normal ( ) MPa Minimum ( ) MPa Impulse ( with • without )	21:
Maximum Flow	( )L/min	ch.
Vacuum	( ) kPa	
Temperature	Maximum ( ) °C Normal ( ) °C Minimum ( ) °C	$\langle \rangle$
Type of Thread	2. Male Thread 3. Female Thread	
Other Requirements	MINCHO THE LINE AND	

# Please do not write in the following section.

	Model	Seal Material	Drawing No.	7.04	
Processing	Body Material	Surface Treatment	10° 0 10		
Proc		1 Mm La			OBCCN.
1	2021		SU,		




# Taper Pipe Threads

# UDC 621.882.082.2 JIS Japanese Industrial Standard

This Japanese Industrial Standard specifies taper pipe threads and is applicable to the threads used mainly for pressure-tight joints on the threads for joining pipes, pipe fittings, fluid machinery, etc.

Attached Table: Basic Profiles, Basic Dimensions and Tolerance



Unit: mm

			Thr	read			Gauge dia		Positio	on of gauge	e plane		Leng	th of usef	ul thread (	min.)	1	1
		~	CCM		Ì	External thread			External thread Internal thread			External thread	When incomplete	Internal threa there is thread part	When there is no			
		2		$\times$		Major dia.	Pitch dia.	Minor dia.	From	pipe end	At pipe	Tolerance on <i>D</i> , <i>D</i> 2	From	Taper internal thread	Parallel internal thread	incomplete thread part		
	Designation of thread	Number of threads	Pitch P (Given for	Height of thread	Radius r	d	<b>d</b> 2	dı	0	$\mathcal{T}$	end	and <i>D1</i> of parallel	position of gauge	From		Taper internal thread/		10
		(in 25.4 mm) <b>n</b>	(Given for reference)	h "	r'		nternal threa	4	Gauge length	Axial tolerance	Axial tolerance	internal thread <u>+</u>	plane toward larger dia. end <b>f</b>	position of gauge plane toward smaller dia.	From end of pipe or coupler <i>I'</i> (Given for reference)	Parallel internal thread From gauge	Outer dia.	Thickness
١						Major dia. D	Pitch dia. <b>D</b> 2	Minor dia. D1	а	±b	±c			end I	relevence)	plane or end of pipe or coupler t	» <b>(</b>	$\geq$
I	R 1/8	28	0.9071	0.581	0.12	9.728	9.147	8.566	3.97	0.91	1.13	0.071	2.5	6.2	7.4	4.4	10.5	2.0
1	R 1/4 R 3/8	19 19	1.3368	0.856 0.856	0.18 0.18	13.157 16.662	12.301 15.806	11.445 14.950	6.01 6.35	1.34 1.34	1.67 1.67	0.104 0.104	3.7 3.7	9.4 9.7	11.0 11.4	6.7 7.0	13.8 17.3	2.3 2.3
	n 3/0	13	1.5500	0.050	0.10	10.002	10.000	14.550	0.00	1.04	1.07	0.104	5.7	5.1	11.4	7.0	17.5	2.5
	R 1/2	14	1.8143	1.162	0.25	20.955	19.793	18.631	8.16	1.81	2.27	0.142	5.0	12.7	15.0	9.1	21.7	2.8
	R 3/4	14	1.8143	1.162	0.25	26.441	25.279	24.117	9.53	1.81	2.27	0.142	5.0	14.1	16.3	10.2	27.2	2.8
	R 1	11	2.3091	1.479	0.32	33.249	31.770	30.291	10.39	2.31	2.89	0.181	6.4	16.2	19.1	11.6	34.0	3.2
	R 1-1/4	11	2.3091	1.479	0.32	41.910	40.431	38.952	12.70	2.31	2.89	0.181	6.4	18.5	21.4	13.4	42.7	3.5
	R 1-1/2	11	2.3091	1.479	0.32	47.803	46.324	44.845	12.70	2.31	2.89	0.181	6.4	18.5	21.4	13.4	48.6	3.5
	R 2	11	2.3091	1.479	0.32	59.614	58.135	56.656	15.88	2.31	2.89	0.181	7.5	22.8	25.7	16.9	60.5	3.8
	R 2-1/2	11	2.3091	1.479	0.32	75.184	73.705	72.226	17.46	3.46	3.46	0.216	9.2	26.7	30.1	18.6	76.3	4.2
	R 3	11	2.3091	1.479	0.32	87.884	86.405	84.926	20.64	3.46	3.46	0.216	9.2	29.8	33.3	21.1	89.1	4.2
/	R 4	11	2.3091	1.479	0.32	113.030	111.551	110.072	25.40	3.46	3.46	0.216	10.4	35.8	39.3	25.9	114.3	4.5
(	R 5	11	2.3091	1.479	0.32	138.430	136.951	135.472	28.58	3.46	3.46	0.216	11.5	40.1	43.5	29.3	139.8	4.5
	R 6	11	2.3091	1.479	0.32	163.830	162.351	160.872	28.58	3.46	3.46	0.216	11.5	40.1	43.5	29.3	165.2	5.0

# Production Facilities That Assure Our Product Quality

Large scale production facilities in Tochigi Prefecture, Japan and Ayutthaya, Thailand, having the capability of flexible mass production, are in full operation around the clock and constitute a complete high-grade supply system, from the machining of components to the assembly and testing of finished products, that is forever ready and able to respond to our user's reliance.

Production Facilities Assure Flexible Supply System

# TOCHIGI NITTO KOHKI CO., LTD.

Production of CUPLA, Linear-Motor-Driven Piston Pumps and their Applied Products

Tochigi Nitto Kohki factory is accredited under ISO 14001 & 9001.



In November 1995, the Japan Quality Assurance Foundation, authority for inspection and registration, awarded Tochigi Nitto Kohki "ISO 9001" for quality control and quality assurance in the manufacture of CUPLA products (Quick connect couplings) as well as 1kW or smaller Linear Drive air compressors, vacuum pumps and applied products, and in November 2001 "ISO 14001", also awarded International Standard environment management systems for intended to perform global environment preservation and pollution control.



# NITTO KOHKI INDUSTRY (THAILAND) CO., LTD.

Production of CUPLA, Air Compressors, and Vacuum Pumps

# ISO 14001 & 9001



NITTO KOHKI INDUSTRY (THAILAND) CO., LTD. factory is accredited under ISO 14000 and ISO 9001.



# From Development to Production, Management and Marketing of "CUPLA"

Nitto Kohki has introduced the "integrated product assurance system" that can respond promptly to "users' requirements" by covering the range of development, quality control, production and marketing in order to ensure supply of high-performance high-quality "CUPLA".

Headquarters and R & D Laboratory

Nitto Kohki's Integrated Product Assurance System

# **Research and Development**

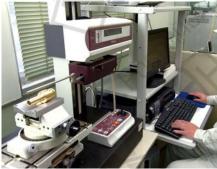
The needs of the time and the latest information are gathered and analyzed, and unique technology is utilized to the challenge for ceaseless developement of better CUPLA, CUPLA that suggest new applications.



# Quality Control

The careful selection of materials, painstaking pursuit of machining precision, and strict surveillance processes such as severe endurance tests have earned trust for our CUPLA as a global brand.

# Production


High-grade, rationalized, and integrated production system extends from the machining of parts to the assembly and testing of completed products. Robots that we make ourselves for our own plants and many other state-of-the-art facilities that cannot be seen elsewhere have marvelous capacity for mass production. And with them all, we aim to be an establishment of a flexible supply system.

Tochigi Nitto Kohki factory is accredited under ISO 14001 & 9001.

# Marketing

Meticulous marketing activities include advertising in the general industrial press and specialist papers, national and local exhibitions, training sessions, catalogs, promotion videos, other presentation tools and technical data sheets for new launches, and unique yet dynamic campaigns, etc.











# Nitto Kohki's Laborsaving Products

Nitto Kohki is capturing the needs of users by introducing to the world not only "CUPLA" quick connect couplings, but also next-generation laborsaving devices, including various "machine tools and hand tools", high precision "Delvo" electric screwdrivers, and linear-motor-driven piston "compressors / vacuum pumps".

# Nitto Kohki's Quality Products



# Machines and Tools to Achieve Energy and Labor Savings in Processing Work

Machines and tools are used at various processing sites for such work as cutting, polishing, scaling, drilling and chamfering of steel materials. We have created a product line up of pneumatic, electric and hydraulic machines and tools to match the diversification of processing methods and the conditions of work operations.





# High Precision "delvo" Electric Screwdrivers for Professional Use

NITTO KOHKI Electric Screwdrivers "delvo" are high-quality tools for professional use, with special emphasis on precise control of torque and long life. They apply just the correct amount of torque –with sure, positive control always at your fingertips. They are smooth and shockless in operation, too.



# Compressors, Vacuum Pumps and Their Applied Products

NITTO KOHKI pumps are unique products featuring a linear-motor-driven free piston system. NITTO KOHKI has made available a complete series of air compressors and suction pumps that incorporate this uniquely functional design. These are quite appropriate as air sources or suction power units for various pneumatically operated equipment and apparatus in advanced industries.

# Safety Guide

# Safety Precautions

The safety precautions provide instructions for the safe use of NITTO KOHKI coupling "CUPLA" to avoid the potential danger of bodily harm or damage to surrounding property. The safety precautions are categorized under the headings Danger, Warning and Caution, in accordance with the degree of potential hazard to the body or surrounding property, if CUPLA is used incorrectly. They are all important notes for safety and must be followed as well as in accordance with International standards #1 and other local safety regulations #2.

 #1: ISO 4413, Hydraulic Fluid Power – General rules relating to systems
 ISO 4414, Pneumatic Fluid Power – General rules relating to systems

 #2: Industrial Health & Safety law (for example)
 ISO 4414, Pneumatic Fluid Power – General rules relating to systems

# 1 DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

# **⚠** WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

# **A**CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in personal injury or property damage.

# **A**DANGER

Stop using the product immediately if there is any anticipated danger of operation or reduced safety.

# **MARNING**

The enclosed safety precautions are only a guideline. When using CUPLA, you are requested to pay particular attention to possible hazardous situations for the application which are not stated in the safety precautions.

# **Caution When Selecting CUPLA**

# 🕂 DANGER

Connection to a coupling of another brand may cause imperfect connection or disconnection, reduced air tightness, impaired pressure resistance or durability, reduced flow rate and potentially result in an unexpected accident and therefore must be avoided. Nitto Kohki cannot accept liability for any accident that may result by mixed use with the coupling of another brand. Please be sure to check for our marks on the right hand side of this page, which are always inscribed on NITTO KOHKI coupling "CUPLA" when you order and purchase.
 Do not use CUPLA under conditions and environments other than specified in the catalog.

# **WARNING**

- Please consult us prior to use if CUPLA is required for use on machines, equipment or systems (hereafter referred to as "equipment, systems, etc.") for sustaining or controlling human life or body.
- When CUPLA is used for the purpose of ensuring safety, please consult us beforehand.
- The compatibility of the product with specific equipment, systems, etc. must be determined by the person designing the equipment, systems, etc. or the person who decides its specifications based on necessary analysis and lest result. The expected performance and safety assurance of the equipment, systems, etc. will be the responsibility of the person who have the based to the equipment is the person who have the perso
- who has determined its compatibility with the product.
- If CUPLA is to be used for the following applications, please consult us:
- Vehicles, aircraft and associated equipment systems that accommodate people
   Medical facilities or suction equipment that directly affects human body
- Equipment that directly comes into contact with and runs food, drugs or medicines, drinking water, atomic energy equipment or equipment that ensures safety
- Selecting the wrong type of seal material may cause a leak. In making your selection, please check the compatibility of the seal material with the type of fluid and temperature used in the application.
- •Please consult us prior to selection or use of CUPLA when they are intended for use with corrosive or flammable gases/liquids and/or in atmospheres of these types of gases and liquids.

## Warranty and Disclaimer

- Our responsibilities for the defects in our products shall be as follows:
- We shall be responsible for any defects in design, material or workmanship of our products, if it is apparent that such defects are due to reasons solely attributable to us.
   Our responsibilities shall be limited to one of the following, as determined by us:
- (a) repair of any defective products or parts thereof,
- (b) replacement of any defective products or parts thereof; or
- (c) compensation for loss and damages incurred by you, which shall in no case exceed the amount of your purchase price for the defective products.
- We shall in no case be liable for any special, indirect or consequential loss or damages, whether such loss or damages are those arising from work stoppage, impairment of other
- goods or death or personal injury.

# Performance, Dimensions and Its Limitation

Please note the performance charts and outside dimensions in this catalog do not take into account any tolerances found in mass production The information is an average or standard value to be a guide for selecting models and to enable technical appraisal by users.

# **Beware of Imitations**

Recently, similar products which invite misidentification or confusion with NITTO KOHKI coupling "CUPLA" have appeared on the market. Connection with such a similar product to NITTO KOHKI coupling "CUPLA" may cause:

- Imperfect connection or disconnection
- 2. Reduced air tightness
- 3. Impaired pressure resistance or durability
- 4. Reduced flow rate
- and could result in unexpected accidents.
- Therefore, connection other than with NITTO KOHKI coupling "CUPLA" must be avoided

Please be sure to check for our original marks on the right hand side of this page, which are always inscribed on NITTO KOHKI coupling "CUPLA" products, when you order and purchase.

Note:

Nitto Kohki cannot accept any liability for any accident that may occur as a result of using couplings of another brand in conjunction with our own.

Markings

# Safety Guide

The following precautions must be taken when using CUPLA. Please contact Nitto Kohki or the outlet / supplier where you purchased the product with regard to repair procedures, certification on the specification or applications of the products.

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

# **CUPLA for Low Pressure (Air)**

### \Lambda Caution

- A control use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage. As to the use of any special paint or solvent, make thoroughly sure of the material compatibility.
  D not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
  O'nly use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
  The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). In decessary, conduct performance evaluation test under your actual operating environment and conditions. Also, stress corrosion cracking may occur if used under corrosive environment. Take note of usage conditions.
  The working pressure and working temperature range for hose connection types depends upon the hose to be used. Prior to use, confirm that the temperature and the type of fluid to be used is suitable for the hose.
  When cleaning CUPLA, care must be taken not to use any material that will affect the seal and body materials.
  Apply a fluoropolymer resin sealant tape on male tapered pipe threads to ensure no leak. (Applies to thread type)
  Do not see dare to ecommended maximum torque when screwing in to the male or female thread of ICUPA for installation. It will cause damage. (Applies to thread type, Nut type)
  Gare must be taken when installing CUPLA not to vertightem or cross thread, this can cause damage and lead to leakage. (Applies to thread type, Nut type).
  Do not use damaged (racked) or deteriorated hoses or tube. This could cause paor connection. (Applies to hose or tube filter connection type)
  Never stick CUPLA when inserting tabe (IdI) into hoses or tubes. This could cause paor connection. (A

- Out on the hose or tube if a designated length more than the end when reusing it. Particle to do so will lead to fearage or bursting or the nose of tube it.
   Prior to use, always perform a leak test after installing CUPLA.
   After connection, try to pull the socket and plug apart to confirm secure connection. If the connection is incomplete, the socket and plug apart to confirm secure connection. If the medium is a gas, an audible bang may be heard on disconnection. We recommend disconnecting this CUPLA in an unpressurized state. (Except for CUPLA with purge function)
   Put a designated dust cap on CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface.
   Always install a shut-off valve between the pressure source and CUPLA.
   On on use with any fluid or benefitied on the one source of the socket and plug apart to confirm secure and contents.

- . Do not use with any fluid or medium other than what is specified, to do so could cause leakage or damage

- Do not use with any indu or medium other than what's specified, to do so could cause leakage or damage.
   The use of initine filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA.
   Always let fluid flow from socket to plug. It will result in reduced flow, (Except for HI CUPLA Two Way Type)
   Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage
   Do not the CUPLA in the society of the store and the sealing parts will cause leakage.
   Do not drop CUPLA. It will cause leakage or malfunction cause leakage or damage.
   Connecting CUPLA the vibration or immediate any cause as and er damage.
   Connecting CUPLA the vibration or immediation and the sealing parts will cause leakage.
   Do not drop CUPLA. It will cause leakage or malfunction.

- Connecting CUPLA in whice dause leakage or manufactor. Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime. The use of a 'Leader' or 'Whip' hose of approx. 30 cm in length between CUPLA and equipment is recommended to help alleviate this. Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swivel joint) Only use CUPLA in a combination with NITTO KOHKI coupling "CUPLA".
- Do not disassemble CUPLA. It will cause leakage or damage

# **Cautions on Handling CUPLA HOSE**

#### **A**Caution

- Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
  Only use CUPLA that are within their rated temperature range. Otherwise the hose will get damaged or deteriorate and cause leakage. It cannot be used continuously at its lowest or highest rated working temperature.
  Do not use on systems that have a high water content, such as drain discharge, this can damage the hose.
  The durability of the Hose differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions.
  Make sure that there is no twist or bend on the hose before use.
  Do not exceed the maximum extensible length, to do so will damage the hose. See catalogue page for full specification details. (Applies to NK CUPLA COIL HOSE)
  Do not bend the hose less than the minimum-bending radius. It will cause damage to the hose.
  The use of inline filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA. The inclusion of foreign matter in the fluid could damage the hose.
  Do not use cUPLA in areas or environment where dust such as a and or metal powder can get in to CUPLA. This may cause damage to the hose.
  Do not use cure to damage to the hose will as a sand or metal powder can get in to CUPLA. This may cause damage to the hose.
  Do not use cure to damage to the hose damage to the hose.

- Up not use near me. It will soften or deform the nose and cause damage to the hose.
   Take care not to damage the hose by dragging over rough ground or concrete. It is also important to ensure that the hose does not become kinked or crushed for long periods.
   Do not use for lifting or hoisting, this can damage the hose.
   Store in a shaded, dry and well-ventilated place.
   Cut off the hose at least 30 m from the end when reusing it. Failure to do so will lead to leakage or bursting of the hose.
   Prior to use, always perform a leak test after installing CUPLA.

## **CUPLA for Oxygen / Fuel Gas**

#### **Marning**

- Do not use with any fluid or medium other than what is specified, to do so could cause leakage or damage.
  Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
  Replace CUPLA with a new one if backfire occurs. Backfire damages the body and the seal and will lead to leakage or damage.
  Do not use damaged(cracked) or detoriorated hoses. It will lead to leakage or busing of hoses. (Applies to hose barb type)
  Never let oil adhere to CUPLA with a new one if backfire damages and seal and will lead to leakage or aut. Incomplete insertion or insufficient clamping will lead to leakage or sliding off of a hose from the barb (tail). (Applies to hose barb type)
  Never let oil adhere to CUPLA when installing a hose clamp or a nut. Incomplete insertion or insufficient clamping will lead to leakage or sliding off of a hose from the barb (tail). (Applies to hose barb type)
  Prior to use, always perform a leak test after installing CUPLA. Always check for leakage or DUPLA before use. If any leakage is found, stop using immediately.
  Cut off the hose at least 3 cm from the end when reusing it. Failure to do so will lead to leakage or bursting of the hose. (Applies to hose barb type)
  Do not use CUPLA are fire or places where gas accumulates. It will eals to leakage or bursting of the hose. (Applies to hose barb type)
  Make sure that the valve on the torch is closed before connecting to CUPLA. If connected with valve open, the gas will flow out and could cause a fire or explosion.
  Do not disassemble CUPLA. It will cause leakage or damage.

#### **A** Caution

- Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
   The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions. Also, stress corrosion cracking may occur if used under corrosive environment. Take note of usage conditions.
   Make sure that O-rings and Packing seals are lubricated with our designated lubricant at all times. The O-rings will get damaged and cause leakage. Not using the designated lubricant will lead to spontaneous fire. (Ask us for the designated lubricant)
   Apply a fluoropolymer resin sealant tape on male tapered pipe threads to ensure no leak. (Applies to thread type)
   Do not exceed the recommended maximum torque when screwing in to the male or female thread of CUPLA for installation. It will cause damage. (Except for hose barb type)

- Do not exceed the recommended maximum torque when screwing in to the male or female thread of CUPLA for installation. It will cause damage. (Except for hose barb type)
  Do not use anything other than the applicable hose sizes. It will cause leakage. (Applies to hose barb type)
  Never strike CUPLA when inserting barb (tail) into hose. This could cause poor connection. (Applies to hose barb type)
  Do not use damaged (cracked) or deteriorated hoses. It will cause leakage. (Applies to hose barb type)
  After connection, try to pull the socket and plug apart to confirm secure connection. It the connection is incomplete, the socket and plug may disconnect when pressurized.
  Care should be taken when disconnecting CUPLA whilst still pressurized. To prevent injury due to the Plug popping out, CUPLA should be held firmly in one hand and the Plug in the other. If the medium is a gas, an audible bang may be heard on disconnection. We recommend disconnecting this CUPLA in an unpressurized state.
  Always istill a shut-off valve between the pressure source and the socket.
  The use of inline filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA.
  Always lest fluid flow from socket to plug. It will result in reduced flow.
  Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will cause enalturation or leakage.
  Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
  Do not apply any antificial impact, bend or tension. It will cause leakage.
  Do not apply any antificial impact. Bend or tension. It will cause leakage or damage.

- Do not drop CUPLA. It will cause leakage or malfunction.
   Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swivel joint)
   Only use CUPLA in a combination with NITTO KOHKI coupling "CUPLA".
   Store CUPLA in a dry environment. Moisture will cause corrosion and may also freeze in low temperatures, which may cause malfunction of CUPLA or other equipment.

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

# MOLD CUPLA / FLOW METER / HOT WATER CUPLA

### \Lambda Warning

Do not apply pressure to CUPLA socket while it is disconnected. It will cause leakage or damage. (Applies to MOLD CUPLA or HOT WATER CUPLA)
 Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
 The fluid in the piping of the plug side will spill out upon disconnection. When using for hazardous fluids (such as hot fluid), discharge all the fluid inside CUPLA before disconnecting, in order to prevent burns, etc. (Applies to MOLD CUPLA)

### **∧** Caution

- Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
   As to the use of any special paint or solvent, make thoroughly sure of the material compatibility.
   Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
   Even it used within the rated operating temperature range, prolonged use of the FLOW METER when under pressure and with the temperature range through seal for used to use of within the rated operating temperature and performance without the temperature in the upper regions will cause leakage. (Especially when the valve is fully open)
   The durability of CUPLA or FLOW METER differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment.
- ment and conditions
- Unity use CUPLA that are writin the rated contemporator range. Otherwise this can lead to leakage incough seal determination of damage. It cannot be used continuously at its lowest on impliest rated working temperature range. Otherwise taily open its lowest on impliest rated working temperature range. Units of the content regions will accuse leakage. (Expected leakage. Expected leakage leakage. Expected leakage leakage. Expected le

## CUPLA for Low Pressure (Water, Liquid) and for Medium Pressure

#### A Warning

- Do not apply pressure to CUPLA socket or plug while they are disconnected. It will cause leakage or damage. (Applies to Valve Structures: Two-way shut-off type and One-way shut-off type)
- Do not use CUPLA continuously exceeding the tated working pressure. It will cause leakage or damage.
   The fluid in the piping will spill out upon disconnection. When using for hazardous fluids (such as hot fluid), discharge all the fluid inside CUPLA before disconnecting, in order to prevent burns, etc.
   (Applies to Valve Structures: Straight through type and One-way shut-off type)

#### ▲ Caution

- · Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage

- Prior to use, check the companishing of the sear material and body material agains the temperature and the full to be used. Selecting the wrong sear material will lead to leakage.
  As to the use of any special paint or solvent, make thoroughly sure of the material compatibility.
  Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
  Even if used within the rated operating temperature range, prolonged use of TSP CUPLA Socket with Ball Valve when under pressure and with the temperature in the upper regions will cause leakage. (Especially when the valve is fully open)
  The durability of CUPLA differs depending on the operating environment and conditions.
  Also, stress corrosion cracking may occur if used under corrosive environment. Take note of usage conditions.
  The working pressure and working temperature range for hose or tube connection types depends upon the hose or tube.
  Wree denome CUPLA are much be tube as working temperature eacl and both metricing.
- When cleaning CUPLA, care must be taken not to use any material that will affect the seal and body materials.

- When cleaning UPLA, care must be taken not to use any material has will affect the seal and body materials.
  Make sure that O-rings and Packing seals are lubricated with grease at all times. If not, the O-rings will get damaged and cause leakage. (Except CUPLA with end face seal construction)
  Apply a floropolymer resis be taken not to use any material that will affect the seal and body materials.
  To not exceed the recommended maximum torque when screwing in to the any reductive data by performance. (Applies to thread type)
  Do not exceed the recommended maximum torque when screwing in to the male or female thread of CUPLA for installation. It will cause damage.
  When installing TSP CUPLA Socket with Ball Valve, in order to protect the spherical surface of the ball valve, install it with the valve in a fully open or closed, there will be a void between valve body and the ball valve, install it with the valve in a fully open or closed, there will be a void between valve body and the ball valve, inclusion and target of the valve is fully open or closed, there will be a void between valve body and the ball valve in othose or tube filter connection type)
  On on use anything other than the applicable hose or tube sizes. It will cause leakage. (Applies to thread type, Nut type, specially body material: stainless steel)
  When installing the body off from the piping, partially open the valve to allow the pressure to discharge. (Applies to TSP CUPLA Socket with Ball Valve)
  Do not use anything other than the applicable hose or tube sizes. It will cause leakage. (Applies to thread type, Nut type, specially off a hose or a tube from the barb (tail). (Applies to hose or tube fitter connection type)
  Never strike (CUPLA when inserting barb (tail) into hose or a tube and secure to discharge or bursting of hoses or tube fitter connection type)
  Ou on tuse damaged (cracked) or deteriorated hoses or tubes. It will lead to leakage or bursti

- (Applies to hose or tube fitter connection type) Prior to use, always perform a leak test after installing CUPLA.

- Prior to use, always periorm a leak test after installing CUPLA.
   After connection, fity to pull the socket and plug apart to confirm secure connection. If the connection is incomplete, the socket and plug apart to confirm secure connection. If the connection is incomplete, the socket and plug may disconnect when pressurized.
   Put a designated dust cap on CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface.
   Do not connect/disconnect with fluid still under dynamic pressure or static residual pressure. It will cause damage to the valve. (Applies to Valve Structures: Two-way shut-off type and One-way shut-off type)
   Always install a shut-off valve between the pressure source and CUPLA.
   Do not strike the tip of an automatic shut-off valve with a harmer or a similar tool. It will cause leakage or malfunction.
   (Applies to medium pressure, Valve Structure: Two-way shut-off type) However, if you need to relieve residual pressure, please consult us.

- (Applies to frequency backstop with any flat or way structure type) however, in you need resolute pressure, presse consult us.
  O not use with any flat or medium other than what is specified, to do so could cause leakage or damage.
  Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause damage to CUPLA.
  The use of initine filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA.
  Design and keep the fluid flow speed through CUPLA below 8 m/s. It will cause damage to the valve if used at 8m/s or over. (Applies to Valve Structures: Two-way shut-off type and One-way shut-off type).
  When using TSP CUPLA Socket with Ball Valve, operate the ball valve slowly to prevent water hammer from occurring. Also be careful not to get fingers caught when operating the handle.
  Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage.
  Do not use to the use environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage.
  Do not use to the use environment or cleakage.
  Do not use CUPLA. It will cause malfunction or leakage.

- Do not let paint stick to CUPLA. It will cause malfunction or leakage.
   Be careful not to put scratches or dents on CUPLA. Especially, scratches on the sealing parts will cause leakage.
   Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
   Do not drop CUPLA. It will cause leakage or malfunction.
   Connecting CUPLA cortex by oriversting or impacting equipment will result in reduced lifetime.
   Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swivel joint)
   On ot use CUPLA in a combination with NITTO KOHKI coupring "CUPLA". (Except LEVER LOCK CUPLA)
   Ob on ot disassemble CUPLA. It will cause leakage or ensure that the valve is fully open. If stored with the valve partially open, the packing will deform and cause leakage.

# Safety Guide

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

# **CUPLA for High Pressure**

## 🕂 Danger

· Do not apply pressure to CUPLA socket or plug while they are disconnected. It will cause leakage or damage

### **Marning**

- Do not use CUPLA continuously exceeding the rated working pressure. Also, do not use 700R CUPLA in an environment where there is impulse pressure. It will cause leakage or damage
   Do not connect/disconnect with fluid still under dynamic pressure or static residual pressure. It will cause damage to the valve. However, the HSP-PV type can be connected under static residual pressure. It will cause damage to the valve. However, the HSP-PV type can be connected under static residual pressure on ection. If the connection is incomplete, the socket and plug may disconnect when pressurized.
   Only use CUPLA in a combination with NITTO KOHKI coupling "CUPLA". However, 280 CUPLA is interchangeable with couplers complying with ISO7241-1A.
   When using by connecting 280 CUPLA with other brand's, compare the pressure specifications and use under the lower pressure.
   Do not disassemble CUPLA. It will cause leakage or damage. rosidual r

#### ▲ Caution

- Curtion

   Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
   As to the use of any special paint or solvent, make thoroughly sure of the material compatibility.
   Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
   The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions.
   Also, stress corrosion cracking may occur if used under corrosive environment. Take note of usage conditions.
   When cleaning CUPLA, care must be taken not to use any material that will affect the seal and body materials.
   Apply a fluoropolymer resin sealant tape on male tapered pipe threads to ensure no feak.
   Do not exceed the recommended maximum forque when screwing in to the male or female thread of CUPLA for installation. It will cause damage.
   Care must be taken when installing CUPLA. Not to vertipatien or cross thread, this can cause damage and lead to leakage. (Applies to HSU CUPLA, S210 CUPLA)
   Prior to use, always perform a leak test after installing CUPLA.
   Prior to use, always perform a leak test after installing CUPLA.
   Put a designated dust cap on CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface.
   Aways install a shut-off wave between the pressure is ource and CUPLA.

- Put a designated dust cap on CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface.
  Always install a shut-off valve between the pressure source and CUPLA.
  Do not strike the tip of an automatic shut-off valve with a hammer or a similar tool. It will cause leakage or mafunction. However, if you need to relieve residual pressure, please consult us.
  Do not strike the tip of an automatic shut-off valve with a hammer or a similar tool. It will cause leakage or damage. Do not use 280 CUPLA with water-glycol operating oil. The plating will dissolve.
  Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause damage to CUPLA.
  The use of inline filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA.
  Design and keep the fluid flow speed through CUPLA below 8 m/s. It will cause damage to the valve if used at 8 m/s or over.
  Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage.
  Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage.

- Do not use CUPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction or leakage.
  Do not tele paint stick to CUPLA. It will acuse malfunction or leakage.
  Be careful not to put scratches or dents on CUPLA. Scratches on the sealing parts will cause leakage. Especially, be careful about the seating surface of HSP CUPLA with male parallel thread with 30° flare.
  Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
  Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
  Do not apply any artificial impact, bend or tension. It will eakage or damage.
  So not drop CUPLA. It will cause leakage or malfunction. If a FLAT FACE CUPLA FP plug is dropped, there is a possibility that the valve may open, to re-set, connect the Socket to the Plug and disconnect, the valve will return to its original post.
  Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
  Use only as guick connect couplings for fluid pipelines. (It cannot be used as a swivel joint)
  When using OPAIn sets for GP Type or GS Type of HSP CUPLA will slightly leak when not coupled.
  Contact us when using CUPLA for high pressure cases.

- Contact us when using CUPLA for high pressure gases.

## **MULTI CUPLA Series**

#### **Overall MULTI CUPLA**

#### **A** Caution

- · Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
- Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
   As to the use of any special paint or solvent, make throughly sure of the material compatibility.
   Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
   The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions. Also, stress corrosion cracking may occur if used under corrosive environment. Take note of usage conditions.
   When cleaning CUPLA, care must be taken not to use any material that will affect the seal and body materials.
   Apply a fluoropolymer resin sealant tape on male tapered pipe threads to ensure no leak. (Applies to Snap ring mount Type, MAM Type, MAM-B Type)
   Do not exceed the recommended maximum torque when screwing in to the male or female thread of CUPLA for installation. It will cause damage.
   Prior to use, always perform a leak test after installing CUPLA.

- Prior to use, always perform a leak test after installing CUPLA.
   Always install a shut-off valve between the pressure source and CUPA.
   Do not use with any fluid or medium other than what is specified, to do so could cause leakage or damage.
   The use of inline filters is strongly advised and recommended. To prevent damage, the fluid should be clean before reaching CUPLA.
   Do not use of UPLA in areas or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction
   Do not use OUPLA in the set or environment where dust such as sand or metal powder can get in to CUPLA. It will lead to malfunction
   Do not use to paint stick to CUPLA, it will cause malfunction or leakage.
   Be careful not to put scratches or dents on CUPLA. Scratches on the sealing parts will cause leakage.
   Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Use only as quick connect couplings for fluid pipelines.
   Outly use CUPLA in a combination with NITTO KOHKI coupling "CUPLA". on or leakage

#### MAM Type

### 🕂 Warning

Do not connect/disconnect with fluid still under dynamic pressure or static residual pressure exceeding the maximum working pressure. It will cause damage to CUPLA
 Do not drop MULTI CUPLA. It will cause deformation of the plate.

### **Caution**

- · Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
- Up not use CUPLA commutously exceeding the rated working pressure. It will cause leakage or damage.
   Make sure that O-rings and Packing seals are lubricated with grease or oil at all times. If not, the O-rings will get damaged and cause leakage.
   Do not deform the stop ring when installing CUPLA. It he stop ring is widened, it may come off from its groove and lead to poor connection or damage of CUPLA. Also change the stop ring with a new one when replacing CUPLA.
   Iso and deform the stop ring when installing CUPLA. It he stop ring is widened, it may come off from its groove and lead to poor connection or damage of CUPLA. Also change the stop ring with a new one when replacing CUPLA.
   Connect after making sure that the lever is in the "connect" position.
   Do not disassemble CUPLA. It will cause breakage.
   Do not disassemble CUPLA. It will cause leakage or damage.

# MAM-A Type / MAM-B Type

### 🗥 Warning

- O Do not connect or disconnect CUPLA while they are pressurized or residual pressure of more than 0.6 MPa remains. It will cause damage to CUPLA.
   O Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
   O Do not drop MULTI CUPLA. It will cause deformation of the plate.

### **∧** Caution

- Make sure that O-rings and Packing seals are lubricated with grease or oil at all times. If not, the O-rings will get damaged and cause leakage.
   Install the C type retaining ring by using a pair of snap ring pilers. If the C type retaining ring are expanded too much, it will come off from its groove and lead to poor connection or breakage. Also change the retaining ring with a new
   Install hose symmetrically from the locking unit when they are connected to CUPLA in order to distribute the reaction force eventy. Failure to do so will lead to breakage.
   Connect after making sure that the lever is in the "connect" position. It will not connect if it is not in the "connect" position.
- Do not force turning the lever. It will cause breakage. Do not strike the tip of an automatic shut-off valve with a hammer or a similar tool. It will cause leakage or malfunction.
- Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause damage to CUPLA
- Design and keep the fluid flow speed through CUPLA below 8 m/s. It will cause damage to the valve if used at 8 m/s or over.
   Do not disassemble CUPLA. It will cause leakage or damage.

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

## **MULTI CUPLA Series**

## MAS Type / MAT Type -

### 🕂 Warning

Do not apply pressure to CUPLA socket or plug while they are disconnected, It will cause leakage or damage.
 Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.

#### ▲ Caution

- Caution
   Make sure that O-rings and Packing seals are lubricated with grease or oil at all times. If not, the O-rings will get damaged and cause leakage.
   Keep the content axis excentricity of the Socket and Plug within 0.6 mm diameter. Failure to do so will lead to leakage or breakage.
   Install the C type retaining ring by using a pair of snap ring pliers. If the C type retaining ring are expanded too much, it will come off from its groove and lead to poor connection or breakage.
   Install the C type retaining ring by using a pair of snap ring pliers. If the C type retaining ring are expanded too much, it will come off from its groove and lead to poor connection or breakage.
   Also change the retaining ring by using a pair of snap ring pliers. If the C type retaining ring are expanded too much, it will come off from its groove and lead to poor connection or breakage.
   Also change the retaining ring the new one when replacing CUPLA. (Applies to MAS Type CUPLA)
   Care must be taken when installing CUPLA not to overtighten or cross thread, this can cause damage dial lead to leakage.
   When connecting, connect socket and plug together tightly without a gap. If the gap exceeds 0.5 mm the flow will be reduced.
   For the load required to maintain connection, set the size the set were MAS Type / MAT Type is described. Connection exceeding the maximum acceptable load will cause breakage.
   Connectifus pelow the minimum load required to maintain connection will result in reduced flow.
   O not connect/disconnect with fluid still under dynamic pressure or still rescue pressure or state residual pressure. It will cause leakage or malfunction.
   Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause damage to the valve if used at 8 m/s or over.
   Do not droop CUPLA. It will cause leakage or malfunction.
   Design and keep the fluid flow speed through CUPLA below 8 m/s. It will cause damage to the valve if used at 8 m/s or over.
   Do not dro

## MALC-01 Type

#### **Caution**

- O not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
   Keep the center axis eccentricity of the Socket, Plug and/or hole in the plate within 2 mm diameter. Failure to do so will lead to leakage or breakage.
   For the dimensions of end configurations for processing on plates, see the page in this catalog where MALC-01 Type is described.
   Obliquity of socket and plug must be within 0.5 degrees during connection. If installed exceeding 0.5 degrees, it will cause leakage or damage.
   When connecting, connect socket and plug together tightly without a gap. However, it can be used even when the gap is 0.5 mm. If the gap exceeds 0.5 mm the flow will be reduced.
   For the load required to maintain connection when CUPLA is connected, see the page in this catalog where MALC-01 Type is described.
   Connecting to how the flow will be reduced.
   For the load required to maintain connection when CUPLA is connected, see the page in this catalog where MALC-01 Type is described.
   Connecting to how the flow will be reduced to maintain connection to reduce and the required to maintain connection when CUPLA is connected.

- Por the load required to maintain connection when CUPLA is connected, see the page in this catalog where whice-or type is described. Connection exceeding the maximum acceptable load will cause or connection below the minimum load required to maintain connection will result in reduced flow.
   When using water, judge whether CUPLA can be used or not by conducting a performance evaluation test under your accuration generic transmission. Leakage may occur according to rust or foreign matter in the piping or solidified minerals. Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause damage to CUPLA.
   Do not drop CUPLA. It will cause leakage or maffunction.
   Do not drop CUPLA. It will cause leakage or damage.

#### MALC-SP Type / MALC-HSP Type

#### **A** Danger

Do not use uncoupled socket or plug continuously exceeding its rated working pressure. It will cause leakage or damage. (Applies to MALC Type CUPLA)

#### A Warning

- Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
   Do not disassemble CUPLA. It will cause leakage or damage.

#### ▲ Caution

- Keep the center axis eccentricity of the Socket and Plug within 2 mm diameter. Failure to do so will lead to leakage or breakage.

- Keep the center axis eccentricity of the Socket and Plug within 2 mm diameter. Failure to do so will lead to leakage or breakage.
   Obliquity of socket and plug must be within 0.5 degrees during connection or disconnection. If install de cxeeding 0.5 degrees, it will cause leakage or damage.
   Install the C type retaining ring by using a pair of snap ring pilers. If the C type retaining rings are expanded too much, it will come off from its groove and lead to poor connection or breakage.
   Also change the retaining ring with a new one when replacing CUPLA. (Applies to Snap ring mount, Type)
   Care must be taken when installing CUPLA not to overlipten or cross thread, this can cause damage and lead to leakage. (Applies to MALC-SP Type CUPLA)
   When connecting, connect socket and plug together tightly without a gap. However, it can be used even when the gap is 0.5 mm. If the gap exceeds 0.5 mm the flow will be reduced.
   For the load required to maintain connection when CUPLA is connected, see the page in this catalog where MALC-SP Type to mALC-HSP Type is described.
   Connection exceeding the maximum acceptable load will cause breakage. Connecting below the minimum load required to maintain connection will result in reduced flow.
   Use it in the state that the fluid does not freeze in the case of water. If it freezes, it will cause leakage or cuPLA.
   Use it in the state that the fluid does not freeze in the case of water. If it resease, it will cause damage to the valve if used at 8 m/s or over.
   Do not drop CUPLA. It will cause leakage or malfunction.

# **SEMICON CUPLA Series**

#### A Warning

- On ont apply pressure to CUPLA socket or plug while they are disconnected. It will cause leakage or damage.
   Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
   (The 'Seal Material Selection Table' and 'Body Material Selection Table' described in our product catalog is for reference only.)

- (The 'Seal Material Selection Table'' and 'Body Material Selection Table'' described in our product catalog is for reference only.)
  On ot use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
  Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
  When using hazardous fluids, always wear protective clothing which are suitable for the fluid being used and will protect the whole body. Any spillage or leakage should be dealt with by an expert in that product.
  Do not concercidisconnect with fluid still under dynamic pressure or static residual pressure. It will cause leakage to the valve.
  When using pressure tanks, connect/disconnect as follows:
  Connection: Connect CUPLA on the nitrogen gas pressure to ambient pressure, and confirm that the internal pressure. Only after then, connect CUPLA on the liquid side.
  Disconnection: Reduce the nitrogen gas pressure to a similar tool. It will cause leakage or malfunction. However, if you need to relieve residual pressure, please consult us.

#### **A** Caution

- A characterization of the contracterization of the contracteri

# Safety Guide

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

# **SEMICON CUPLA Series**

## **▲** Caution

- Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
   Do not drop CUPLA. It will cause leakage or malfunction.
   Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swivel joint)
   Do not disassemble CUPLA. It will cause leakage or damage.
- Check CUPLA regularly. Stop using immediately if anything unusual is found on CUPLA

## **CUPLA for Inert Gas**

#### 🗥 Warning

- Do not apply pressure to CUPLA socket or plug while they are disconnected. It will cause leakage or damage. (Applies to SP-V CUPLA)
   Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage.
   The fluid in the piping will spill out upon disconnection. Take extra care when using at places where it is liable to cause anoxia. (Applies to PCV PIPE CUPLA)

#### **Caution**

- Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage.
   Only use CUPLA that are within their rated temperature range. Otherwise this can lead to leakage through seal deterioration or damage. It cannot be used continuously at its lowest or highest rated working temperature.
   The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions. For PCV PIPE CUPLA, replace it with a new one after connection/disconnection of 5000 times as an approximate guide.
   When cleaning CUPLA, care must be taken not to use any material that will affect the seal and body materials.
   Apply threads sealants on male tapered pipe threads to ensure no leak.
   Do not exceed the recommended maximum torque when screwing in to the male or female thread of CUPLA for installation. It will cause damage.
   Care must be taken when installing CUPLA not to overtighten or cross thread, this can cause damage and lead to leakage. (Applies to SP-V CUPLA Body material: Stainless steel)
   Prior to use, always perform a leak test after installing CUPLA.
   Make sure that O-rings are lubricated with grease at all times. If not, the O-rings will get damaged and cause leakage. (Applies to SP-V CUPLA Body material: Stainless steel)
   For the purpose of reducing the instribution code on connection-or disma gread, apply a lubricant that is suitable for the operation of the prevent O-ring from damage, apply a lubricant the to servite the respection of the operational environment to the Plug tip and sealing surface. (Applies to SP-V CUPLA Seal material: Stainless to SP-V CUPLA Seal material: Stainless

- Make sure that O-rings are lubricated with figuress at all liters. If not, the O-rings will get damaged and cause leakage. (Applies to SP-V CUPLA seal materials:)
  For the purpose of reducing the insertion load on connection and to prevent O-ring from damage, apply a lubricant that is suitable for the operational environment to the Plug tip and sealing surface. (Applies to SP-V CUPLA Seal material: HNBR)
  Do not use pipe sizes other than the suffacted beizes. It will cause leakage. Contact us if required to use A luminum alloy pipes. (Applies to PCV PIEC CUPLA)
  Chamfer the edge of the copper pipe to be used. If not chamfered, it will damage the packing and cause leakage. Do not use pipes with deformation or burrs. It will lead to leakage or poor connection. (Applies to PCV PIEC CUPLA)
  When connecting, try to pult the socket and plug apart to confirm secure connection. If the connection is incomplete, the socket and plug apart to CUPLA and the apart to confirm secure connection. If the connection is incomplete, the socket and plug apart to CUPLA and regular pressure. (Applies to PCV PIEC CUPLA)
  On to disconnect with fluid still under dynamic pressure or static residual pressure.
  When connected with the copper pipe, do not rotate the pipe. It will damage the packing and cause leakage. (Applies to PCV PIEC CUPLA)
  When disconnected, store CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface. (Applies to SP-V CUPLA for per pipe, place and utor dynamic pressure source and CUPLA.
  Alwe sum the tore of under dynamic pressure or a static residual pressure.
  Applies to SP-V CUPLA after disconnection when there is a possibility of foreign matter such as dirt sticking to the seal surface. (Applies to SP-V CUPLA)
  Always instal a shut-off valve between the pressure source and CUPLA.
  Do not strike the tip of an automatic shut-off valve with a hammer or a similar t

- Do not let paint stick to CUPLA. It will cause malfunction or leakage.

- Do not let paint stick to CUPLA. It will cause mailunction or leakage.
   Be careful not to put scratches or dents on CUPLA. Especially, scratches on the sealing parts will cause leakage.
   Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
   Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Stop using CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Stop using CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Stop using CUPLA directly to vibrating or swart that has adhered to the inside of CUPLA is removed after use. (Applies to PCV PIPE CUPLA)
   Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swirel joint) (Applies to SP-V CUPLA)
   Only use CUPLA in a combination with NITTO KOHKI coupling "CUPLA". (Applies to SP-V CUPLA)
   On pot disessemble CUPLA. It will cause leakage or damage.
- Do not disassemble CUPLA. It will cause leakage or damage

# **PAINT CUPLA**

#### **Warning**

Make sure that a hose containing a ground wire is connected to a ground. Insufficient grounding will lead to fire or dangerous explosion caused by possible sparks of static electricity.

### Wear appropriate clothes and protective equipment such as safety glasses, face guard and gloves at all times. Otherwise it could be potentially hazardous when paint or solvent splashes on to operators

#### **A** Caution

- This CUPLA is designed for paints diluted by solvents. Do not use this CUPLA for any other applications such as Powder coating, Electrostatic coating or Electrostatic coating. The seal material will deteriorate and cause leakage As to the use of any special paint or solvent, make thoroughly sure of the material compatibility. Do not use CUPLA continuously exceeding the rated working pressure. It will cause leakage or damage

In AllohokaA I

No bot due to the control optical, match hologing and the foregraphic of the match of plasmic optical and the control optical, match hologing and the control optical and hologing and the control optical and hologing and the control optic

Dink

- Connecting CUPLA directly to vibrating or impacting equipment will result in reduced lifetime.
   Use only as quick connect couplings for fluid pipelines. (It cannot be used as a swivel joint)
   Only use CUPLA in a combination with NTTO KOHK coupling "CUPLA".
   Do not disassemble CUPLA. It will cause leakage or damage.

Lock plate ASSY

# Precautions Relating to the Use of All CUPLA products

Be sure to read the "Instruction Sheet" that comes with the product or "Caution" on the package before use.

O-ring

Seal part (cross section)

# **HYGIENIC CUPLA**

### 🕂 Warning

• Any residual fluid remaining in the passage will spill out on disconnection. Drain any residual fluid before disconnection to avoid burns or injury to the skin when dangerous fluid such as chemical agent or high temperature fluid is user If the fluid comes into contact with the skin, stop the disconnecting work and consult a doctor if necessary.

#### **∧** Caution

Observe the cautions below. If not observed, it could result in burns, injury to the skin, damage to the product or other machinery when dangerous fluid such as chemical agent or high temperature fluid is used. Stop using CUPLA immediately if this happens.

- CUPLA can be easily disassembled for cleaning. CUPLA should be evaluated before use to determine the suitability with regard to sanitation and safety. Especially when using O-rings of other brands than Nitto Kohki, be sure to evaluate the O-ring at your end. Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used.


- Especially when using O-rings of other brands than Nitte Kohki, be sure to evaluate the O-ring at your end. Prior to use, check the compatibility of the seal material and body material against the temperature and the fluid to be used. Selecting the wrong seal material will lead to leakage. Use only within range of its rated temperature. May cause damage or deterioration to the sealing and leak if used otherwise. Also, do not use continuously ander any pressure exceeding the rated working pressure. This may cause leakage or damage. Use only within range of its rated temperature. May cause damage or deterioration to the sealing and leak if used otherwise. Also, do not use continuously at the lowest or highest working temperature. The durability of CUPLA differs depending on the operating environment and conditions (pressure and temperature etc.). If necessary, conduct performance evaluation test under your actual operating environment and conditions. When assembling, disassembling, do not for the disassembled parts, or put scratches on the sealing surface. It will cause malfunction or leakage. When washing to OUPLA do so with CUPLA that in disassembled state. Well ing in a sembled state will deform the parts or damage the O-ring and cause leakage. When washing to CUPLA, be as owith CUPLA that in disassembled state. Well ing in a sembled state will deform the parts or damage the O-ring and cause leakage. The outer diameter and thickness of the pips to be welded to CUPLA must conform to JIS G 3447. After welding to CUPLA, a brease polish the welded part. (Surface roughness Ra ≦ 1.0 µm recommended for the liquid contact parts. Surface roughness on the weld ine should not exceed fty=16 µm.) If it is not polished or if the surface roughness becomes rougher than the recommended value, it may potentially cause the spread of bacteria. Malfunction acused by welding (directly or otherwise) is not included in the waranty. For to leas, always perform a leak test at fafter installing CUPLA

- When CUPLA remains connected for long periods of time, it may become difficult to disassemble.
   In this case, do not forcefully turn the socket and plug to disconnect as this may damage the seal material and cause leakage.
   Do not disconnect with fluid still under dynamic pressure or static residual pressure.
   Do not drop CUPLA. It will cause leakage or malfunction.
   Always install a shut-off valve between the pressure source and CUPLA.
   Do not apply any artificial impact, bend or tension. It will cause leakage or damage.
   Connecting CUPLA directly to vibrating or impacting equipment will result in recued lifetime.
   Use only as quick connect couplings for fluid pipelines.
   Ohy use CUPLA in a combination with NITTO KOHKI coupling "CUPLA".
   Oherd CUPLA

- Orbit doe of La that containation with the total grain grant could be that the total of the total could be total total and total total could be total total co

# **SEMI-STANDARD CUPLA Series**

Contact us separately for detail cautions for the SEMI-STANDARD CUPLA series.



- The O-ring and Lock plate ASSY are consumable items.
   Please replace the Lock plate ASSY at approximately 1,000 times connections / disconnections.
   When the Lock plate ASSY is deformed, replace it with a new one regardless of connection/disconnection times.
- The durability of the O-ring differs depending on the operating environment and conditions (pressure and temperature etc.).

# Maintenance of CUPLA

## **O-ring Replacement Procedure**

The internal O-ring is a consumable item. If the O-ring in the socket has failure such as wear and tear or deterioration, take the following steps to replace it with a new one. Always use genuine Nitto Kohki O-rings.

PMJ-1 (Small)

PMJ-2 (Large)

#### 0-ring replacement Jig Accessories for O-ring maintenance

# Grease for O-ring

GRE-M1 (Mineral grease) for NBR and FKM

GRE-HC1 (Hydrocarbon grease) for NBR and FKM

- GRE-S1 (Silicone grease) for NBR, FKM, and EPDM
- GRE-S2 (Silicone grease) for NBR, FKM, and EPDM (NSF H1, NSF 61 registered product)

# Caution for Storing CUPLA

 Store CUPLA in a place where no dust or foreign matter gets in. If fluid flows while the dust or foreign matter is present inside Store CUPLA in a place where no dust or foreign matter gets in. If fluid flows while the dust or foreign matter may go into the equipment connected to CUPLA and may cause malfunction.
 Store CUPLA indoors away from water or moisture.
 Store CUPLA in a shaded, dry and well-ventilated place.
 Do not to drop CUPLA1. will deform or damage CUPLA.
 If CUPLA are stored or not being used for a long period of time, check their appearance, function and performance before use.

CUPLA should be inspected periodically to ensure safe operation and to prevent them from a performance drop or malfunction. If there is a malfunction in CUPLA or wear and tear, please replace it with a new one. If you have any concerns, contact Nitto Kohki or the distributor from whom you purchased your CUPLA.

### How to Remove the O-ring

- Use an optional O-ring replacement Jig to remove the O-ring. Be careful not to damage the groove of O-ring with the jig. Used O-rings with wear and tear or deterioration can be removed easily with the jig.
- After removing the O-ring, wipe the groove clean with a cloth.

### How to Install a New O-ring

O-ring

• After making sure that no dust or foreign matter exists in the groove of O-ring, push in part of the O-ring and the remaining part can be easily pressed in with the jig.



2 HSP CUPLA has a backup ring. Insert an O-ring in the place as shown in the figure. If CUPLA connection/disconnection is hard and not smooth after the O-ring has been replaced, apply a little grease to the O-ring.

O-ring replacement Jig

# 2000 0

Backup ring for HSF

Press the O-ring into place with the jig.

# CUPLA **Quick Connect Couplings**

The logo for CUPLA is registered trademark or a trademark of Nitto Kohki Co., Ltd. in Japan the United States and/or certain other countries

# NITTO KOHKI CO., LTD.

# **Head Office**

9-4, Nakaikegami 2-chome, Ohta-ku, Tokyo 146-8555, Japan Fax:+81-3-3753-8791 Tel:+81-3-3755-1111 E-mail : overseas@nitto-kohki.co.jp Web www.nitto-kohki.co.jp/e

# **Overseas Affiliates / Offices**

NITTO KOHKI U.S.A., INC.

46 Chancellor Drive, Roselle, Illinois 60172, U.S.A. For CUPLA Fax: +1-630-924-1174 Tel:+1-630-924-5959 For Tool Tel:+1-630-924-9393 Fax:+1-630-924-0303 For Pump

Tel:+1-630-924-8811 Fax: +1-630-924-0808 www.nittokohki.com/

# NITTO KOHKI CO., LTD. Mexico Representative Office

Torre Corporativo 1 Piso 11 Central Park Armando Birlain Shaffler #2001 Col Centro Sur, Queretaro, Qro, C.P. 76090, Mexico Tel : +52-442-290-1234

# NITTO KOHKI EUROPE GMBH

Gottlieb-Daimler-Str. 10, 71144 Steinenbronn, Germany Tel:+49-7157-989555-0 Fax:+49-7157-989555-40 www.nitto-kohki.eu/

# NITTO KOHKI EUROPE GMBH UK Branch

Unit A5, Langham Park Industrial Estate, Maple Road, Castle Donington, Derbyshire DE74 2UT, United Kingdom Tel:+44-1332-653800 Fax : +44-1332-987273 www.nitto-kohki.eu/

## NITTO KOHKI CO., LTD. Bangkok Representative Office M&A Business Center, 7th Floor, Unit 7A, Chalanttip Building, 38 Convent Road, Silom, Bangrak, Bangkok 10500, Thailand

Tel:+66-2632-0307 Fax:+66-2632-0308 www.nittobkk.com/

DISTRIBUTED BY

NITTO KOHKI CO., LTD. India Liaison Office 3rd Floor, Building No.9-A DLF Cyber City, Phase-III, Gurgaon, Haryana 122002, India Tel:+91-124-454-5031 Fax : +65-6227-0192

NITTO KOHKI CO., LTD. Singapore Branch 10 Ubi Crescent #01-62, Ubi Techpark Lobby D, Singapore 408564 Tel:+65-6227-5360 Fax:+65-6227-0192 www.nitto-kohki.co.jp/e/nksb/index.html

NITTO KOHKI AUSTRALIA PTY LTD 77 Brandl Street, Eight Mile Plains, Queensland 4113, Australia Tel:+61-7-3340-4600 Fax : +61-73340-4640 www.nitto-australia.com.au/

#### NITTO KOHKI (SHANGHAI) CO., LTD. Room1506, Suite C. Orient International Plaza.

No.85 Loushanguan Road, Shanghai 200336, China Tel:+86-21-6415-3935 Fax: +86-21-6472-6957 www.nitto-kohki.cn/

#### NITTO KOHKI (SHANGHAI) CO., LTD. Shenzhen Branch 2005C Shenzhen ICC Tower, Fuhuasanlu 168, Futian District, Shenzhen, Guangdong 518048, China Tel:+86-755-8375-2185 Fax:+86-755-8375-2187 www.nitto-kohki.cn/

ISO 14001 JQA-EM4057

ISO 9001 JQA-2025

H.Q./R&D Lab